SCHAUM'S

ouT/ine

DATA STRUCTURES
WITH C

SEYMOUR LIPSCHUTZ

A Implementation of algorithms and procedures using C

A Simplified presentation of Arrays, Recursion, Linked Lists,
Queues, Trees, Graphs, Sorting & Searching Methods and
Hashing

A Excellent pedagogy. Includes

A 255 Solved examples and problems

A 86 C Programs

A 160 Supplementary problems 3

A 100 Programming problems ; _:;. Jf
A 135 Multiple-choice questions sonomu]

N4

| ey

Tata McGraw-Hill

Data Structures With C
Adapted in India by arrangement with The McGraw-Hill Companies, Inc., New York
Sales Territories: India, Nepal, Bangladesh, Sr1 Lanka and Bhutan

Copyright © 2011, by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced
or distnbuted n any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a
database or retrieval system without the pnor written permission of The McGraw-Hill Companies, Inc. including, but not
limited to, in any network or other electrome storage or transmission, or broadcast for distance learming.

This edition can be exported from India only by the publishers,
Tata McGraw Hill Education Private Limited

ISBN (13}): 978-0-07-070198-4
ISBN (10): 0-07-070198-9

Vice President and Managing Director—McGraw-Hill Education, Asia Pacific Region: Ajay Shukla

Head—-Higher Education Publishing and Marketing: Vibha Mahajan
Manager—Sponsoring (SEM & Tech. Ed.): Shalini Jha

Asst Sponsoring Editor: Surabhi Shukla

Development Editor: Surbhi Suman

Executive—Editorial Services: Sohini Mukherjee

Jr Manager—Production: Anjali Razdan

Dy Marketing Manager—SEM & Tech Ed: Biju Ganesan

General Manager—Production: Rajender P Ghansela
Asst General Manager—Production: B L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable.
However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published
herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising
out of use of this information. This work is published with the understanding that Tata McGraw-Hill and 1ts authors are
supplying information but are not attempting 1o render engineering or other professional services, If such services are
required, the assistance of an appropriate professional should be sought.

Typeset at Bukprint India, B-180A, Guru Nanak Pura, Laxmi Nagar, Delhi 110 092, and printed at
Lalit Offset Printer, 219, F.LE., Patpar Ganj. Industrial Area, Delhi 110 092

Cover: SDR Printers
RQXLCRBZDLLBC

rhe McGraw Hill Companies

Contents

A Word 1o the Readers of the Special Indian Edition xi
.Pr{‘:‘f}ﬂ‘t’ AV

1.2 Basic Termunology: Elementary Data Orgamizauon [/
1.3 Bata Structures 1.3

.4 Data Structure Operations /.Y

1.5 Abstract Data Types (ADT) 1.10

1.6 Algonthms: Complexity, Time-Space Tradeolt /.72

|27 } -

135

Muluple Choice Questions 1,20
Answers to Multiple Choice Questions . 1. 20

2. PRELIMINARIES 2.1 - 2.37

2.3 Algornithmmic Notations 2.6

24 C tures 2.9

i

Complexity of Aleonithms 213

Other Asvmptotic Notations tor Complexity of Adgorithins £2, 6, 0 2. 1Y
Subalgonthms 2. 20

Vanables, Data Tvpes 227

0wl while 1

Supplementary Problems

t |13 (43 |3
~d | "

A

-
e

35

Programming Problems 2 .36
Muitiple Chorce Questions 237
Answery 10 Multiple Choice Questions

1o
;

ki
et

A, STRING PROCESSING 3.1 - 342
3 oduct] 2
Basic Terminoloay 4./

Storing Strings 3.2
Character Data Type 4.6
strings as ADT 3.7

String Operattons 1.8
Word/Text Processing 3.713

Pattern Matching Aleorithms .20
" . Yy = : 3

'._p..l _.pJ- 1._}\-.‘

e | da (s (b

! " L [.u
e | = | 4% |

viii Contents

Supplementary Problems 3,39

Progremming Problems 3,40
Multiple Choice Questions 3.41
Answers to Multiple Chotce Questions 342

4. ARRAYS, RECORDS AND POINTERS 4.1-485
won 4./
4.2 Linear Arravs 4.2
4.3 Arravs as ADT 44
4.4 Representation of Linear Arrays in Memory 4.6
4.5 Traversing Linear Arravs 4.8
4.6 lnserting and Deleting 410
4.7 Sorting, Bubble Sort 4.15
4.8 Searching: Lincar Search 4./Y
4.9 Binary Search 4.22
4.10 Multudhmensional Arrays 427
4.11 Representation of Polvnomials Using Arrays 4,30
4.12 Pointers: Pomnter Arrays 444
4.13 Dynamic Memory Management 4.4/
4.14 Records: Record Structures 4.4Y
4,15 Representation of Records in Memory: Parallel Arrays 432
> Matrices 4.5
4,17 Sparse Matrices .60
Solved Probiemy 403
Supplementary Problems .80
Progranuming Problems 481
Multiple Choice Questions 4.8
Answers 1o Multiple Choice Questions 4.85

&, LINKED LISTS S‘J—‘i‘ﬁ‘}-
. ‘01) 3
---‘1|) . _— R .F 5

i Representauon of Linked Lists i Memory 5.4
34 Traversing a Linked Last 3.8

2.3 Searching a Linked List J.12

6 Memory Allocation: Garbage Collection 3.17
[nservon o a Linke 18 3. 77

3.8 Delenon lrom a Linked Last 332

SO Header Lioked Tasts 3 58

2. 10 Circularly Linked Lasts - 547

21 Two-way Lists (or Doubly Linked Lists) 5,32
212 Josephus Problem and its Solution 5.6

5.13 Buddv Systems 3.63

Solved Problems 5.67
Mipplementary Problemys 5.7
Programming Problems 5.80

Multiple Choice Questions 5.82
Answers to Multiple Choice Questions 5.83

6. STACKS, QUEUES, RECURSION

{: I lﬂ[f][i]l "I]Ii][] 5 [
'Y hw f D
6.3 Array Representation of Stacks 6.4
6.4 Linked Representation of Stacks 6.8
6.6 Arthmetic Expressions; Polish Notation 6.15
6.7 Application of Stacks 6.25
9 Towers of Hanoi 639
6.10 Implementation of Recursive Procedures by Stacks 6,44
6.11 Queunes 6.50
6.12 Linked Representation of Queues 6.57
6.13 Queuve as ADT 6.64
6.14 Circular Queues 6.6/
6.15 Deques 6.78
6.16 Prionty Queues 6.7¢
6.17 Applications of Queues 6,92
Solved Problems 6.10]
Supplementary Problems 0.11Y
Programming Problems 6.123
Multiple Choice Questions 6.124
Answers to Multiple Choice Questions 6,125

LJ:REES

7.1 Introduction Z.f
1.2 Bmary Trees 7./
7.3 Representing Binary Trees in Memory 7.5
7.4 Traversing Binary Trees 7.9
7.5 Traversal Algorithms Using Stacks 7./12
7.6 Header Nodes: Threads /723
7.7 Threaded Binary Trees 727
7.8 Binary Search Trees 7.28
7.9 Searching and Inserting in Binary Search Trees 7.2¢
7.10 Deleting in a Binary Search Tree 7.38
7.11 Balanced Binary Trees 7.49
7.12 AVL Search TREes 7.50
713 Tneartion in an AVI. Seanch Trea 7 51
7.14 Deletion in an AVL Search Tree 7.57
7.15 m-way Search Trees 7.6/
7.16 Scarchmg, Insertion and Deletion 1n an m-wayv Search Tree

/.03

7.17 B-Trees 7.66
7.18 Searching, Insertion and Deletion in a B-tree 7.67

Contents ix

71.19
7.20
7.21

§

Contents

B+-Trees 7.73
Red-Black Trees 7.78
Heap; Heapsort 7.90

Path Lengths: Huffman's Algorithim

;403

,.}1 1-'l W ol X E =Ny ¥

1.24

Applications of Trees 7.772

Solved Problems 7. 114
Supplementary Problems 7.132
Programming Problems 7.139
Multiple Choice Ouestions 7.142
Answers to Multiple Choice Ouestions

F 43

8. GRAPHS AND THEIR APPLICATIONS

8.1 - 8,77

8.1 Introduction X/

8.2

Graph Theory Terminology 8.7

8.3

Sequential Representation of Graphs; Adjacency Matrix: Path Matrix

5.4

Warshall's Alporithm: Shortest Paths

8. Y

8.5

Linked Representation of a Graph 8,77

K.6

Opcratons on Graphs 8,20

8.7
8.8
8.9

Traversing a Graph 8.3/

Posets; Topological Sorting 8.40
Spanning Trees &8.47

Solved Problems 8,59
Supplementary Problems 8.71
Programming Problems 8.74
Multiple Choice Questions 8.76
Amywers to Multiple Choice Questions

877

9. SORTING AND SEARCHING

9.1 - 9.56

0.1 Introduction © 7

0.2 Sorting Y. [

9.3

Insertion Sort 9.0

Y4

Seiection Sort 9 ()

9.5

9.6
9.7

Merging 9.14
Merge-Sort 9.19
Shell Soit .31

9.8

Radix Sopp O 4

9.9
9.10

Searching and Data Modification 9.38

Hashing 94/

Solved Problems 953
Supplementary Problems 954
Programming Problems 9.55
Multiple Choice Questions 9.55
Answers to Multiple Choice Questions

Index

9.56

Li-L7

A Word to the Readers of the
Special Indian Edition

Data Structures 1s a subject of primary importance to the discipline of Computer Science and Engineering.
It is a logical and mathematical model of storing and organizing data in a particular way in a computer,
required for designing and implementing efficient algorithms and program development.

Different kinds of data structures like arrays, linked lists, stacks, queues, etc., are suited to different
kinds of applications. Some specific data structures are essential ingredients of many efficient algorithms,
and make possible the management of huge amounts of data, such as large databases and Internet indexing
services. For example, B-trees are particularly well-suited for implementation of databases, while compiler
implementations usually use hash tables to look up identifiers.

Nowadays, various programming languages like C, C++ and Java are used to implement the concepts
of Data Structures, of which C remains the language of choice for programmers across the world. This
book provides the implementation of algorithms and pseudocodes using C in every chapter, thereby,
making it easier for the readers to comprehend the theory. Muluiple-Choice Questions included in the
text are aimed to help students practice the learnt concepts. Thus, we hope that this book will be an
excellent self-teach and test-preparation matenial for beginners.

Salient Features

* Demonstrates the implementation of algorithms and procedures related to data-structure
concepts using the C programming language

= Offers simplified presentation for important topics—Arrays, Recursion, Linked Lists, Queues,
Trees, Graphs, Sorting and Searching Methods, Hashing

= ADT representation of Arrays, Strings, Linked Lists, Stacks and Queues

* Provide apt discussions on notations of Algorithm complexity, Representation of polynomials
using arrays, and linked lists, Dynamic memory management, Josephus problem, Linked list and
queue operations, Application of stacks, queues and trees, Spanning trees. AVL-trees, m-way
trees, B-trees, B+-trees, Red-black trees, Sorting algorithm, Hash table

* Excellent pedagogical teatures:

180 Solved Examples

86 C Programs

175 Solved Problems

160 Supplementary Problems (unsolved)

100 Programming Problems

o 135 Mulnple-Choice Questions

xh A Word to the Readers of the Special Indian Edition

Chapter Highlights

Chapter 1 gives an overview of data structures and discusses classification of data structures, Abstract
Data types (ADT), algorithm complexity while mathematical and algorithmic notations, control structures,
subalgorithms, variables and datatypes are covered in Chapter 2.

String processing, string operations and strings as ADT are taken up in Chapter 3. Word or text
processing are also discussed in this chapter.

Chapter 4 explains arrays, records and pointers. Topics like arrays as ADT, storage representations,
representation of polynomials using arrays, addition of polynomials, dynamic memory management
pointers, records and matrices are covered in this chapter.

Chapter 5 is on linked lists. It includes linked lists as ADT, operations using linked lists, header
linked lists, doubly linked lists, circularly linked lists, garbage compaction, Josephus problem and its
solution, representation and manipulations polynomials using linked lists and buddy systems (in brief).

Stacks, queues and recursion and their applications are discussed in Chapter 6. Array, linked list and
ADT representation of stacks and queues, polish notations using stacks, queue operations, circular
queues, dequeues, priority queues, maze problem, simulation of queues, categorizing data and decimal
to binary conversion are dealt in this chapter.

Chapter 7 is on binary trees. It provides information on traversal of binary trees, threaded binary
trees, binary search trees, balanced binary trees, AVL search trees, m-way search trees, B-trees,
B+-trees, red-black trees and applications of trees (expression Trees; game Trees).

Chapter 8 presents the concepts of graphs and their applications. Spanning trees, Minimum spanning
tree algorithms—Prim’s and Kruskal's algorithms, Directed and bi-connected graphs are covered here.

Finally, sorting algorithms such as shell sort, K-way merge sort, balanced merge sort, polyphase
merge sort, two-way merge sort, and efficiency considerations in searching and sorting are discussed in

Chapter 9. Topics such as merging ordered and unordered files, sort order and sort stability, hash table
and hash functions are also covered in this chapter.

The Schaum’s Outlines Advantage

A high-performance study guide, Schaum’s Qutlines help you cut study time, hone problem-solving
skills and achieve your personal best in exams. They give you the information your teachers expect you
to know 1n a handy and succinct format-—without overwhelming you with unnecessary details. You get
a complete overview of the subject, plus plenty of practice exercises to test your skills. Schaum’s is
ideal for self-study at your own pace, equipping you to understand and recall all important facts that you

need to remember.
Acknowledgements

A number of experts have taken out time from their busy schedules to provide valuable feedback about
the book. Our heartfelt gratitude goes out to those whose names are given in the next page.

Manish Manoria
TRUBA Institute of Engineering and Information

Technology, Bhopal, Madhya Pradesh

L K Sharma
Alwar Institute of Engineering and Technology,
Alwar, Rajasthan

Rajiv Pandey
Amity University,
Lucknow, Unar Pradesh

Dilkeshwar Pandey
Academy of Business and Engineering Sciences
(ABES), Ghaziabad, Uttar Pradesh

Mayank Aggarwal
Gurukul Kangri Vishwavidvalaya,
Haridwar, Untarakhand

Sanjay Kumar Pandey
United College of Engineering and Research,
Allahabad, Uttar Pradesh

H N Verma
Sachdeva Institute of Technology,
Mathura, Uttar Pradesh

Shashank Dwivedi
United College of Engineering and Research,

Allahabad, Uttar Pradesh

Gurpreet Kaur
Indraprastha University, New Delhi

Prashant Lakkadwala
Chameli Devi Institute of Technology and
Management, Indore, Madhva Pradesh

Sameer Bhave
Indore Professional Studies Academy(IPSA),
Indore, Madhya Pradesh

Feedback

A Word to the Readers of the Special Indian Edition =~ xifi

Bhupesh Deka
Infosys Technologies Limited,
Bhubaneshwar, Orissa

S R Biradar
Sikkim Manipal Institute of Technology,
East Sikkim

Mahua Banerjee
Xavier Institute of Social Service,
Ranchi, Jharkhand

R S Prasad
Vishwakarma Institute of Information Technology,
Pune, Maharashira |

llango Krishnamurthi
Sri Krishna College of Engineering and
Technology, Coimbatore, Tamil Nadu

P Sampath
Bannari Amman Institute of Technology,
Erode, Tamil Nadu

D Lakshmi
Dr N G P Institute of Technology,
Coimbatore, Tamil Nadu

T Ramesh
National Institute of Technology(NIT),
Warangal, Andhra Pradesh

G Shobha
R V College of Engineering,
Bangalore, Karnataka

Jibi Abraham
MSR Institute of Technology,
Bangalore, Karnataka

Helpful suggestions and constructive criticism always go a long way in enhancing any endeavour. We

request all readers to email us their valuable comments/views/feedback for the be

rment of the book at

tmb.csefeedback @ gmail.com. mentioning the title and author name in the subject line. Also, plca.;é feel

free to report any piracy of the book spotted by vou.

A

Copyri |
opyrighted mat’e‘riél

Preface

The study of data structures 1s an essential part of virtually every undergraduate and graduate program
in computer science. This text, in presenting the more essential material, may be used as a textbook for
a formal course 1n data structures or as a supplement to almost all current standard texts.

The chapters are mainly organised in increasing degree of complexity. Chapter 1 is an introduction
and overview of the material, and Chapter 2 presents the mathematical background and notation for the
presentation and analysis of our algorithms. Chapter 3, on pattern matching, is independent and tangential
to the text and hence may be postponed or omitted on a first reading. Chapters 4 through 8 contain the
core material in any course on data structures. Specifically, Chapter 4 treats arrays and records,
Chapter 5 is on linked lists, Chapter 6 covers stacks and queues and includes recursion Chapter 7 is
on binary trees and Chapter 8 is on graphs and their applications. Although sorting and searching i1s
discussed throughout the text within the context of specific data structures (e.g., binary search with
linear arrays, quicksort with stacks and queues and heapsort with binary trees), Chapter 9, the last
chapter, presents additional sorting and searching algorithms such as merge-sort and hashing.

Algorithms are presented in a form which 1s machine and language independent. Moreover, they are
written using mainly IF-THEN-ELSE and REPEAT-WHILE modules for flow of control, and using an
indentation pattern for easier reading and understanding. Accordingly, each of our algorithms may be
readily translated into almost any standard programming language.

Adopting a deliberately elementary approach to the subject matter with many examples and diagrams,
this book should appeal to a wide audience, and is particularly suited as an effective self-study guide.
Each chapter contains clear statements of definitions and principles together with illustrative and other
descriptive material. This is followed by graded sets of solved and supplementary problems. The solved
problems illustrate and amplify the material, and the supplementary problems furnish a complete review
of the matenal in the chapter.

I wish to thank many friends and colleagues for invaluable suggestions and critical review of the
manuscript. I also wish to express my gratitude to the staff of the McGraw-Hill Schaum's Qutline Series,
especially Jeffrey McCartney, for their helpful cooperation. Finally, I join many other authors in explicitly
giving credit to Donald E. Knuth who wrote the first comprehensive treatment of the subject of data
structures, which has certainly influenced the writing of this and many other texts on the subject.

SEYMOUR LIpscHUTZ

Chapter 1

Introduction and Overview

e iy i, B, G L T T " A e it wral Tl By - U T P P . i | A - T A

1.1 INTRODUCTION

This chapter introduces the subject of data structures and presents an overview of the content of
the text. Basic terminology and concepts will be defined and relevant examples provided. An
overview of data organization and certain data structures will be covered along with a discussion
of the different operations which are applied to these data structures. Last, we will introduce the
notion of an algorithm and its complexity, and we will discuss the time-space tradeotf that may
occur in choosing a particular algorithm and data structure for a given problem.

1.2 BASIC TERMINOLOGY; ELEMENTARY DATA ORGANIZATION

Data are simply values or sets of values. A dara irem refers to a single unit of values. Data stems
that are divided into subitems are called group items, those that are not arc cailed elementury
items. For example, an employee’s name may be divided into three subitems—{first name, middle
initial and last name-—but the social security number would normally be treated as a single #tem.

Collections of data are frequently organized inte a hierarchy of fields, records and files. In
- order to make these terms more precise, we introduce some additional terminology.

An entity i1s something that has certain attributes or properties which may be assigned vaiues.
The values themselves may be either numeric or nonnumeric. For example. the following are
possible attributes and their corresponding values for an entity, an employee of a given orgamzation:

Attributes: Name Age Sex Social Security Number
Values: ROHLAND, GAIL 34 F 134-24-5533

Entities with stmilar attributes (e.g., all the employees in an organization) form an enrity sel.
Each attribute of an entity set has a range of values, the set of all possible values that could be
assigned to the particular attribute,

S o o Data Structures with C

The term “information” is sometimes used for data with given attributes, or, in other words,
meaningful or processed data.

The way that data are organized into the hierarchy of fields, records and files reflects the
relationship between attributes, entities and entity sets. That is, a field is a single elementary unit
of information representing an attribute of an entity, a record is the collection of field values of a
given entity and a file is the collection of records of the entities in a given entity set.

Each record in a file may contain many field items, but the value in a certain field may umqucly
determine the record in the file. Such a field K is called a primary key, and the values &, k5, ... In
such a field are called keys or key values.

Example 1.1

(a) Suppose an automobile dealership maintains an inventory file where each record contains
the following data:

Serial Number, Type, Year, Price, Accessories

The Serial Number field can serve as a primary key for the file, since each automobile has a
unique serial number.
(b) Suppose anorganization maintainsa membership file where each record contains the following data:

Name, Address, Telephone Number, Dues Owed

Although there are four data items, Name and Address may be group items. Here the Name
field is a primary key. Note that the Address and Telephone Number fields may not serve as
primary keys, since some members may belong to the same family and have the same address
and telephone number.

Records may also be classified according to length. A file can have fixed-length records or
variable-length records. In fixed-length records, all the records contain the same data items with
the same amount of space assigned to each data item. In variable-length records, file records may
contain different lengths. For example, student records usually have variable lengths, since different
students take different numbers of courses. Usually, variable-length records have a minimum and a
maximum length.

The above organization of data into fields, records and files may not be complex enough to
maintain and efficiently process certain collections of data. For this reason, data are also organized
into more complex types of structures. The study of such data structures, which forms the subject
matter of this text, includes the following three steps:

1. Logical or mathematical description of the structure

2. Implementation of the structure on a computer

3. Quantitative analysis of the structure, which includes determining the amount of memory

needed to store the structure and the time required to process the structure.

The next section introduces us to some of these data structures.

Remark: The second and third of the steps in the study of data structures depend on whether the
data are stored (a) in the main (primary) memory of the computer or (b) in a secondary (external)
storage unit. This text will mainly cover the first case. This means that, given the address of a
memory location, the time required to access the content of the memory cell does not depend on

Introduction and Overview 1.3

the particular cell or upon the previous cell accessed. The second case, called file management or
data base management, 1s a subject unto itself and lies beyond the scope of this text.

1.3 DATA STRUCTURES

Data may be organized in many different ways: the logical or mathematical model of a particular
organization of data 1s called a dara structure. The choice of a particular data model depends on
two considerations. First, it must be rich enough in structure to mirror the actual relationships of
the data in the real world. On the other hand, the structure should be simple enough that one can
effectively process the data when necessary. This section will introduce us to some of the data
structures which will be discussed in detail later in the text.

Classification of Data Structures

Data structures are generally classified into primitive and non-primitive data structures. Basic data
types such as integer, real, character and boolean are known as primitive data structures. These data
types consist of characters that cannot be divided, and hence they are also called simple data types.

The simplest example of non-primitive data structure is the processing of complex numbers.
Very few computers are capable of doing arithmetic on complex numbers. Linked-lists, stacks,
queues, trees and graphs are examples of non-primitive data structures. Figure 1.1 shows the
classification of data structures.

Data Structures
|

' '

Primitive Dala Structures Non-Primitive Data Structures
B S
Integer Real Character Boolean Linear Data Non-linear Data
Structures Structures
- Arrays = Trees
— Linked List —» Graphs
—» Stacks
—- QuBues

Fig. 1.1 Classification of Data Structures

Based on the structure and arrangement of data, non-primitive data structures are further classi-
fied into lincar and non-linear.

A data structure 1s said to be linear if its elements form a sequence or a linear list. In linear data
structures, the data is arranged in a linear fashion although the way they are stored in memory need
not be sequential. Arrays, linked lists, stacks and queues are examples of linear data structures.

Conversely, a data structure is said to be non-linear if the data 1s not arranged in sequence. The
insertion and deletion of data is therefore not possible in a linear fashion. Trees and graphs are
examples of non-linear data structures.

Arrays

The simplest type of data structure is a linear (or one-dimensional) array. By a linear array, we
mean a list of a finite number n of similar data elements referenced respectively by a set of n
consecutive numbers, usually 1, 2, 3, ..., n. If we choose the name A for the array, then the
elements of A are denoted by subscript notation

a,, Gy, A3z, ..., G,
or by the parenthesis notation

A(l), A(2), A(3), ..., A(N)
or by the bracket notation

All], Al2], A[3], ..., A[N]

Regardless of the notation, the number K in A[K] is called a subscript and A[K] is called a
subscripted variable.

Remark: The parentheses notation and the bracket notation are frequently used when the array
name consists of more than one letter or when the array name appears in an algorithm. When using
this notation we will use ordinary uppercase letters for the name and subscripts as indicated above
by the A and N. Otherwise, we may use the usual subscript notation of italics for the name and
subscripts and lowercase letters for the subscripts as indicated above by the a and n. The former
notation follows the practice of computer-oriented texts whereas the latter notation follows the
practice of mathematics in print.

A linear array STUDENT consisting of the names of six students is pictured in
Fig. 1.2. Here STUDENT[1] denotes John Brown, STUDENT[2] denotes Sandra
Gold, and so on.

Linear arrays are called one-dimensional arrays because each element in
such an array is referenced by one subscript. A two-dimensional array is a
collection of similar data elements where each element is referenced by two
subscripts. (Such arrays are called matrices in mathematics, and tables in
business applications.) Multidimensional arrays are defined analogously. Arrays
will be covered in detail in Chapter 4. |

A chain of 28 stores, each store having 4 departments, may list its weekly sales (to the nearest
dollar) as in Fig. 1.3. Such data can be stored in the computer using a two-dimensional array in
which the first subscript denotes the store and the second subscript the department. If SALES is
the name given to the array, then

SALES[1, 1] = 2872, SALES[1, 2] = 805, SALES[1, 3] = 3211, ..., SALES[28, 4] = 982

Introduction and Overview
Dept. Z
Store ‘ ’
1 2872 805 3211 1560
2 2196 1223 2525 1744
3 3257 1017 3686 1951
28 2618 931 2333 982
Fig. 1.3
The size of this array is denoted by 28 x 4 (read 28 by 4), since it contains 28 rows (the

horizontal lines of numbers) and 4 columns (the vertical lines of numbers).

Linked Lists

Linked lists will be introduced by means of an example. Suppose
a brokerage firm maintains a file where each record contains a
customer’s name and his or her salesperson, and suppose the
file contains the data appearing in Fig. 1.4. Clearly the file
could be stored in the computer by such a table, i.e., by two
columns of nine names. However, this may not be the most
useful way to store the data, as the following discussion shows.

Another way of storing the data in Fig. 1.4 is to have a
separate array for the salespeople and an entry (called a
pointer) in the customer file which gives the location of each

customer’s salesperson. This is done in Fig. 1.5, where some
of the pointers are pictured by an arrow from the location of

the pointer to the location of the
corresponding salesperson. Practically
speaking, an integer used as a pointer
requires less space than a name; hence
this representation - saves space,
especially if there are hundreds of
customers for each salesperson.
Suppose the firm wants the list of
customers for a given salesperson. Using
the data representation in Fig. 1.5, the
firm would have to search through the
entire customer file. One way to
simplify such a search is to have the
arrows in Fig. 1.5 point the other way;
cach salesperson would now have a set

1

O o ~N O O A W N

Customer Salesperson

1 Adams Smith

2 Brown Ray

3 Clark Jones

- Drew Ray

5 Evans Smith

6 Farmer Jones

7 Geller Ray

8 Hill Smith

9 Iinfeld Ray

Fig. 1.4
Customer Pointer Salesperson
Adams 3 Jones 1
Brown 2 > Ray 2
Clark 1 Smith 3
Drew 2
Evans 3
Farmer 1
Geller 2
Hill 3
Infeld 2
Fig. 1.5

1'.‘5' e |

[
v Py
1 -

o

L

1.6 Data Structures with C

of pointers giving the positions of his or her customers, as in Fig. Salesperson | Pointer
1.6. The main disadvantage of this representation is that each
salesperson may have many pointers and the set of pointers will 1 Jones 3,

change as customers are added and deleted.

Another very popular way to store the type of data in Fig. 1.4 is L
shown in Fig. 1.7. Here each salesperson has one pointer which points 3| Smith 1.5,8

2 Ray 2.4,7.9

to his or her first customer, whose pointer in turn points to the second
customer, and so on, with the salesperson’s last customer indicated by Fig. 1.6
a 0. This is pictured with arrows in Fig. 1.7 for the salesperson Ray.

Using this representation one -
can easily obtain the entire list Customer | Link Ssperecn | Pomier
of customers for a given Al s Jones 3 1
salesperson and, as we will see
i i L. 2| Brown ‘& ey 2 |2
in Chapter 5, one can easily .
insert and delete customers. 3 Clark 6 Smith ! 3
Th.e representation of the , Drew ,
data in Fig. 1.7 is an examp!2
of linked lists. Although the S Evans 8
terms “pointer” and “link™” are g Earmer 0
usually used synonymously,
: 7 Geller 8
we will try to use the term
“pointer” when an element in 8 Hill 0
one llS[‘ points to an element 5 Infeld 9 ‘
in a different list, and to

reserve the term “link” for the
case when an element in a list

points to an element in that same list.

Trees

Fig. 1.7

Data frequently contain a hierarchical relationship between various elements. The data structure
which reflects this relationship is called a rooted tree graph or, simply, a tree. Trees will be
defined and discussed in detail in Chapter 7. Here we indicate some of their basic properties by

means of two examples.

Example 1.4 Record Structure

Although a file may be maintained by means of one or more arrays, a record, where one indicates
both the group items and the elementary items, can best be described by means of a tree
structure. For example, an employee personnel record may contain the following data items:

Social Security Number, Name, Address, Age, Salary, Dependents

However, Name may be a group item with the subitems Last, First and MI (middle initial). Also, Address
may be a group item with the subitems Street address and Area address, where Area itself may be a
group item having subitems City, State and ZIP code number. This hierarchical structure is pictured
in Fg. 1.8(a). Another way of picturing such a tree structure is in terms of levels, as in Fig. 1.8(b).

Introduction and Overview . 1.7

Employee
Soc. Sec. No. Name Address Age Salary Dependents

/IN /N

Last First M| Street Area

/N

City State
(a)

01 Employee
02 Social Security Number
02 Name
03 Last
03 First

03 Middle Initial
02 Address

03 Street

03 Area -
04 City
04 State

04 ZIP
02 Age

02 Salary
02 Dependents

(b)
Fig. 1.8

Example 1.5 Algebraic Expressions
Consider the algebraic expression
(2x + y)(a - 7b)°

Using a vertical arrow (T) for exponentiation and an asterisk (*) for multiplication, we can
represent tile expression by the tree in Fig. 1.9. Observe that the order in which the operations
will be performed is reflected in the diagram: the exponentiation must take place after the
subtraction, and the multiplication at the top of the tree must be executed last.

There are data structures other than arrays, linked lists and trees which we shall study. Some of
these structures are briefly described below.

(a) Srack: A stack, also called a last-in first-out (LIFO) system, is a linear list in which insertions
and deletions can take place only at one end, called the rop. This structure is similar in its
operation to a stack of dishes on a spring system, as pictured in Fig. 1.10(a). Note that new
dishes are inserted only at the top of the stack and dishes can be deleted only from the top
of the stack.

1.8 Data Structures with C

RN
2 /N

Fig. 1.9

(b) Queue: A queue, also called a first-in first-out (FIFO) system, is a linear list in which
deletions can take place only at one end of the list, the “front” of the list, and insertions can
take place only at the other end of the list, the “rear” of the list. This structure operates in
much the same way as a line of people waiting at a bus stop, as pictured in Fig. 1.10(b): the
first person in line is the first person to board the bus. Another analogy is with automobiles
waiting to pass through an intersection—the first car in line is the first car through.

(c) Graph: Data sometimes contain a relationship between pairs of elements which is not
necessarily hierarchical in nature. For example, suppose an airline flies only between the
cities connected by lines in Fig. 1.10(c). The data structure which reflects this type of
relationship is called a graph. Graphs will be formally defined and studied in Chapter 8.

(a) Stack of dishes (b) Queue waiting for a bus

Boston

_

Chicago e

Philadelphia

Los Angeles e

Miami

(c) Airline flights

Fig. 1.10

Remark: Many different names are used for the elements of a data structure. Some commonly used
names are “data element,” “data item,” “item aggregate,” “record,” “node” and “data object.” The
particular name that is used depends on the type of data structure, the context in which the
structure 1s used and the people using the name. Our preference shall be the term “data element,”

Introduction and Overview 1.9

but we will use the term “record” when discussing files and the term “node” when discussing
linked lists, trees and graphs.

1.4 DATA STRUCTURE OPERATIONS

The data appearing in our data structures are processed by means of certain operations. In fact, the
particular data structure that one chooses for a given situation depends largely on the frequency
with which specific operations are performed. This section introduces the reader to some of the
most frequently used of these operations.

The following four operations play a major role in this text:

I. Traversing: Accessing each record exactly once so that certain items in the record may be
processed. (This accessing and processing is sometimes called *“visiting” the record.)

2. Searching: Finding the location of the record with a given key value, or finding the locations
of all records which satisfy one or more conditions.

3. Inserting: Adding a new record to the structure.

4. Deleting: Removing a record from the structure.

Sometimes two or more of the operations may be used in a given situation; e.g., we may want to delete
the record with a given key, which may mean we first need to search for the location of the record.
The following two operations, which are used in special situations, will also be considered:

I. Sorting: Arranging the records in some logical order (e.g., alphabetically according to some
NAME key, or in numerical order according to some NUMBER key, such as social security
number or account number)

2. Merging: Combining the records in two different sorted files into a single sorted file

Other operations, e.g. copying and concatenation, will be discussed later in the text.

Example 1.6

An organization contains a membership file in which each record contains the following data for a
given member:

Name, Address, Telephone Number, Age, Sex

(a) Suppose the organization wants to announce a meeting through a mailing. Then one would
traverse the file to obtain Name and Address for each member.

(b) Suppose one wants to find the names of all members living in a certain area. Again one
would traverse the file to obtain the data.

(c) Suppose one wants to obtain Address for a given Name. Then one would search the file for
the record containing Name.

(d) Suppose a new person joins the organization. Then one would insert his or her record into
the file.

(e) Suppose a member dies. Then one would delete his or her record from the file.

(f) Suppose a member has moved and has a new address and telephone number. Given the name
of the member, one would first need to search for the record in the file., Then one would
perform the “update”—i.e., change items in the record with the new data.

(g) Suppose one wants to find the number of members 65 or older. Again one would traverse the
file, counting such members.

= 150 Data Structures with C

1.5 ABSTRACT DATA TYPES (ADT)

An abstract data type (ADT) refers to a set of data values and associated operations that
are specified accurately, independent of any particular implementation. With an ADT, we
know what a specific data type can do, but how it actually does it is hidden. In broader terms, the
ADT consists of a set of definitions that allow us to use the functions while hiding the
implementation.

The properties of an abstract data type are emphasized through the following examples.

Consider a list L consisting of data items—1, 2, 3, 4, 5, 6, 7, 8, 9 as shown in Fig. 1.11(a). We

can use any of four data structures to support [—a linear list, a matrix, a tree, or a graph, as
given in Fig. 1.11(b), (c) and (d) respectively.

00000 000

(@) Linear List (b) Matrix

Fig. 1.11 Data structures which support a list

Assume that we place the list on an ADT. The users should not be aware of the structure that we
use, i.e,, whether it is a tree, or graph or something else. As long as they are able to insert and
retrieve data, it does not make a difference as to how we store the data.

Introduction and Overview 1.11

Example 1.8
A shop maintains the list of customers, sales assistants and the average Py
? : T oxd Customers
transactions on a day as given in Fig. 1.12. 1
Suppose we need to write a program, which will help determine the 1 | Customers

number of sales assistants required to serve customers efficiently. Here,
we will need to simulate the waiting line in the shop. This analysis will
require the simulation of a queue. However, queues are not generally 3 | Customers
available in programming languages. Therefore, even if the queue type

2 | Customers

is avmlable,. we ne?d some ba::nc queue uPeratmns 5UC|:I as enqueuing e A
and dequeuing, which are basically insertion and deletion operations,
for the simulation. 1 | Ray

Here is what we can do in this situation: 2 | Reed

1. Write a program that simulates the queue, or

2. Write a queue ADT that can solve any queue problem. 3 | Kelly ,
If we choose the second option, we still need to write a program to (A Tt
simulate the shop application. However, doing that will actually be e aden

simpler and faster because we can concentrate on the application rather than the queue.

An abstract data type can thus be further defined as a data declaration packaged together with
the operations that are meaningful for the data type. In other words, we encapsulate the data and
the operations on the data, and then we hide them from the user.

The user need not know the data structure to use the ADT. Considering Example 1.8, the application
program should have no knowledge of the data structure. All references to and manipulation of the
data in the queue must be handled through defined interfaces in the structure. Allowing the application
program to directly reference the data structure is a common fault in many implementations. This
prevents the ADT from being fully portable to other applications.

Abstract Data Type Model

A representation of the ADT model is
shown in Fig. 1.13. Notice that there are
two different parts of the ADT model—
functions (public and private) and data
structures. Both are contained within the Application
ADT model itself, and do not come within Program
the scope of the application program. On
the other hand, data structures are
available to all of the ADTs functions as
required, and a function may call on any
other function to accomplish its task. This
means that data structures and functions
are within the scope of each other.

Data are entered, accessed, modified
and deleted through the external Fig. 1.13 ADT Model

Interface

1.12 Data Structures with C

application programming interface. This interface can only access the public functions. For each
ADT operation, there is an algorithm that performs its specific task. The operation name and
parameters are available to the application, and they provide the only interface to the application.

When a list is controlled entirely by the program, 1t is implemented using simple structures.
Note that it i1s not enough if we just encapsulate the structure in an ADT, it is also necessary for
multiple versions of the structure to coexist. Therefore, we must hide the implementation from the
user, while being able to store different data at the same time.

Two basic structures, namely array and linked list, can be used to implement an ADT list.

1.6 ALGORITHMS: COMPLEXITY, TIME-SPACE TRADEOFF

An algorithm is a well-defined list of steps for solving a particular problem. One major purpose of
this text is to develop efficient algorithms for the processing of our data. The time and space it
uses are two major measures of the efficiency of an algorithm. The complexity of an algorithm is
the function which gives the running time and/or space in terms of the input size. (The notion of
complexity will be treated in Chapter 2.)

Each of our algorithms will involve a particular data structure. Accordingly, we may not always
be able to use the most efficicnt algorithm, since the choice of data structure depends on many
things, including the type of data and the frequency with which various data operations are
applied. Sometimes the choice of data structure involves a time-space tradeoff: by increasing the
amount of space for storing the data, one may be able to reduce the time needed for processing the
data, or vice versa. We illustrate these ideas with two examples.

Searching Algorithms

Consider a membership file, as in Example 1.6, in which each record contains, among other data,
the name and telephone number of 1ts member. Suppose we are given the name of a member and
we want to find his or her telephone number. One way to do this is to linearly search through the
file, i.e., to apply the following algorithm:

Linear Search

Search each record of the file, one at a tuume, unttl finding the given Name and hence the
corresponding telephone number.

First of all, i1t 1s clear that the ume required to execute the algorithm 1s proportional to the
number of comparisons. Also, assuming that each name in the file is equally likely to be picked, it
Is intuitively clear that the average number of comparisons for a file with n records is equal to n/2;
that is, the complexity of the linear search algorithm is given by C(n) = n/2.

The above algorithm would be impossible in practice if we were searching through a list
consisting of thousands of names, as n a telephone book. However, if the names are sorted
alphabetically, as in telephone books, then we can use an efficient algorithm called binary search.
This algorithm 1s discussed in detail in Chapter 4. but we briefly describe its gencral idea below.

Binary Search

Compare the given Name with the name in the middle of the list; this tells which halt of the list
contains Name. Then compare Name with the name in the middle of the correct half to determine
which quarter of the hist contains Name. Continue the process untl finding Name in the list.

One can show that the complexity of the binary search algorithm is given by

Introduction and Overview 1.13

Cin) = log, n
Thus, for example, one will not require more than 15 comparisons to find a given Name in a list
containing 25 000 names.

Although the binary search algorithm 1s a very efficient algorithm, 1t has some major drawhacks.
Specifically, the algorithm assumes that one has direct access to the middle name in the list or a
sublist. This means that the list must be stored in some type of array. Unfortunately, inserting an
element in an array requires elements to be moved down the list, and deleting an element from an
array requires element to be moved up the list,

The telephone company solves the above problem by printing a new directory every year while
keeping a separate temporary file for new telephone customers. That is, the telephone company
updates its files every year. On the other hand, a bank may want to insert a new customer in its file
almost instantaneously. Accordingly, a linearly sorted list may not be the best data structure for a bank.

An Example of Time-Space Tradeoff

Suppose a file of records contains names, social security numbers and much additional information
among its fields. Sorting the file alphabetically and running a binary search is a very efficient way
to find the record for a given name. On the other hand, suppose we are given only the social
security number of the person. Then we would have to do a linear search for the record, which is
extremely time-consuming for a very large number of records., How can we solve such a problem?
One way is to have another file which is sorted numerically according to social security number.
This, however, would double the space required for storing the data. Another way, pictured in Fig,
1.14, is to have the main file sorted numerically by social security number and to have an auxiliary
array with only two columns, the first column containing an alphabetized list of the names and the
second column containing pointers which give the locations of the corresponding records in the
main file. This is one way of solving the problem that is used frequently, since the additional
space, containing only two columns, is minimal for the amount of extra information it provides.

Name Pointer Soc. Sec. No Name Extra Data
1 |Abbey, Gragory 2 11013-44-5585 | Davis, Earl XXX XRKKXX XXX KK
2 | Brown, John 4 2 ﬂEE-EE-E'!QEJAbney. Gregory | JOOOXIXX XXX XX XX
3 | Carey, Mary 548 31027-73-3961 | Lane, Alice XXXXXAXXAXKAX XX
4 |Davis, Earl | 1 4| 174-62-3485 | Brown, John | XXXXXXXXXXXXXX
5 .Elllm Susan 78 5[182-74-6398 | Smith, Mary YUK EXXHXXAXXX

Auxiliary array Main file

sorted alphabetically sorted by social security number

Fig. 1.14

1.14

Data Structures with C

Remark: Suppose a file is sorted numerically by social security number. As new records are
inserted into the file, data must be constantly moved to new locations in order to maintain the
sorted order. One simple way to minimize the movement of data is to have the social security
number serve as the address of each record. Not only would there be no movement of data when
records are inserted, but there would be instant access to any record. However, this method of
storing data would require one billion (10°) memory locations for only hundreds or possibly
thousands of records. Clearly, this tradeoff of space for time is not worth the expense. An alternative
method is to define a function H from the set K of key values—social security numbers—into the
set L of addresses of memory cells. Such a function H is called a hashing function. Hashing
functions and their properties will be covered in Chapter 9.

SOLVED PROBLEMS

Basic Terminology

1.1 A professor keeps a class list containing the following data for each student:

1.2

1.3

(a)
(b)
(c)

(a)
(b)

(c)

Name, Major, Student Number, Test Scores, Final Grade

State the entities, attributes and entity set of the list.
Describe the field values, records and file.
Which attributes can serve as primary keys for the list?

Each student is an entity, and the collection of students is the entity set. The properties,
name, major, and so on, of the students are the attributes.

The field values are the values assigned to the attributes, i.e., the actual names, test
scores, and so on. The field values for each student constitute a record, and the collection
of all the student records is the file.

Either Name or Student Number can serve as a primary key, since each uniquely
determines the student’s record. Normally the professor uses Name as the primary key,
but the registrar may use Student Number.

A hospital maintains a patient file in which each record contains the following data:

Name, Admission Date, Social Security Number, Room, Bed Number, Doctor

(a)
(b)
(¢)

(a)

(b)
(c)

Which items can serve as primary keys?
Which pair of items can serve as a pnmary key?
Which items can be group items?

Name and Social Security Number can serve as primary keys. (We assume that no two
patients have the same name.)

Room and Bed Number in combination also uniquely determine a given patient.

Name, Admission Date and Doctor may be group items.

Which of the following data items may lead to variable-length records when included as

items in the record: (a) age, (b) sex, (¢c) name of spouse, (d) names of children, (e)
education, (f) previous employers?

Introduction and Overview 1.15

Since (d) and (f) may contain a few or many items, they may lead to variable-length records.
Also, (e¢) may contain many items, unless it asks only for the highest level obtained.

1.4 Data base systems will be only briefly covered in this text. Why?

“Data base systems™ refers to data stored in the secondary memory of the computer. The
implementation and analysis of data structures in the secondary memory are very different
from those in the main memory of the computer. This text is primarily concerned with data

structures in main memory, not secondary memory.

Data Structures and Operations

1.5

1.6

1.7

1.3

Give a brief description of (a) traversing, (b) sorting and (c¢) searching.

(a) Accessing and processing each record exactly once
(b) Arranging the data in some given order
(¢) Finding the location of the record with a given key or keys

Give a brief description of (a) inserting and (b) deleting.

(a) Adding a new record to the data structure, usually keeping a particular ordering

(b) Removing a particular record from the data structure

Consider the linear array NAME in Fig. 1.15, which is sorted alphabetically.

(a) Find NAME|2], NAME|4] and NAME[7].

(b) Suppose Davis is to be inserted into the array. How many names must be
moved to new locations,

(¢c) Suppose Gupta is to be deleted from the array. How many names musl
be moved to new locations?

(2) Here NAMEIK] is the kth name 1n the list. Hence,
NAME|[2] = Clark, NAME|4] = Gupta, NAME|7] = Pace
(b) Since Davis will be assigned to NAME[3], the names Evans through

Smith must be moved. Hence six names are moved.
(¢) The names Jones through Smith must be moved up the array. Hence four

names must be moved.

@ ~N OO AW N -

NAME
Adam
Clark

Evans

Gupta

Jones

Lane

Pace
Smith

Fig. 1.15

Consider the linear array NAME in Fig. 1.16. The values of FIRST and LINK|[K]
in the figure determine a hinear ordering of the names as follows. FIRST gives the
location of the first name in the list, and LINK[K] gives the location of the name
following NAME(K], with O denoting the end of the list. Find the linear ordering of the

namecs.

1.16 Data Structures with C

FIRST NAME LINK
S ™\ 1 Hogers 7 |

2 | Clark 8
3 |
4 . Hansen | 10 |

“e—» 5 | Brooks 2

6 | Pitt 1

7 | Walker 0

8 | Fisher 4

10 | Leary B

Fig. 1.16

The ordering is obtained as follows:
FIRST = 5, so the first name 1n the list 1s NAME]|S5], which 1s Brooks.
LINK][5] = 2, so the next name is NAME|[2], which is Clark.
LINK|[2] = 8, so the next name i1s NAME|[8], which is Fisher.
LINK|[8] = 4, so the next name i1s NAME|[4], which 1s Hansen.
LINK[4] = 10, so the next name is NAME[10], which 1s Leary.
LINK[10] = 6, so the next name is NAME[6], which is Pitt.
LINK[6] = 1, so the next name is NAME[1], which i1s Rogers.
LINK][1] = 7, so the next name is NAME|[7], which is Walker.
LINK][7] = 0, which indicates the end of the list.
Thus the linear ordering of the names is Brooks, Clark, Fisher, Hansen, Leary, Pitt,
Rogers, Walker. Note that this 1s the alphabetical ordering of the names.

1.9 Consider the algebraic expression (7x + v)(5a — b)’. (a) Draw the corresponding tree diagram
as in Example 1.5. (b) Find the scope of the exponential operation. (The scope of a node v in
a tree 1s the subtree consisting of v and the nodes following v.)

(a) Use a vertical arrow (T) for exponentiation and an asterisk (*) for multiplication to obtain
the tree 1in Fig. 1.17.

+/~’
il ™
\ y

=4

Fig. 1.17

1.10

1.11

1.12

Introduction and Overview 1.17

(b) The scope of the exponentiation operation T is the subtree circled in the diagram. It
corresponds to the expression (5a — b)°.

The following is a tree structure given by means of level numbers as discussed in
Example 1.4:

01 Employee 02 Name 02 Number 02 Hours 03 Regular 03 Overtime 02 Rate
Draw the corresponding tree diagram.

The tree diagram appears in Fig. 1.18. Here each node v is the successor of the node which
precedes v and has a lower level number than v.

Employee

Name Number kﬂau
Regular Overtime
Fig. 1.18

Discuss whether a stack or a queue is the appropriate structure for determining the order
in which elements are processed in each of the following situations.

(a) Batch computer programs are submitted to the computer center.
(b) Program A calls subprogram B which calls subprogram C, and so on.
(¢) Employees have a contract which calls for a seniority system for hiring and firing.

(a) Queue. Excluding priority cases, programs are executed on a first come, first served basis.

(b) Stack. The last subprogram is executed first, and its results are transferred to the next-
to-last program, which is then executed, and so on, until the original calling program is
executed.

(c) Stack. In a seniority system, the last to be hired is the first to be discharged.

The daily flights of an airline company appear in Fig. 1.19. CITY lists the cities, and ORIG[K]
and DEST[K] denote the cities of origin and destination, respectively, of the flight
NUMBER[K]. Draw the corresponding directed graph of the data. (The graph is directed
because the flight numbers represent flights from one city to another but not returning.)

The nodes of the graph are the five cities. Draw an arrow from city A to city B if there 1s a
flight from A to B, and label the arrow with the flight number. The directed graph appears in

Fig. 1.20.

1.18 Data Structures with C

city NUMBER ORIG DEST
1 | Atlanta J 1 701 2 | 3
2 | Boston 2 702 3 i 2 /’El e Boston
3 | Chicago 3| 705 5 I 3 : /
4 | Miami 4 708 3 4 e .‘\702 ﬁﬂ?
5 | Philadelphia 5 711 2 1 5 705 Philadelphia
(a) 6 712 5 2
7| 713 5 1 -
ap 715 | 1 4 ~
9 717 5 4
10 718 4 5
® Miami
(b)
Fig. 1.19 Fig. 1.20

Complexity; Space-Time Tradeoffs

1.13 Briefly describe the notions of (a) the complexity of an algorithm and (b) the space-time
tradeoft of algorithms.

(a) The complexity of an algorithm is a function f{n) which measures the time and/or
space used by an algorithm in terms of the input size n.

(b) The space-time tradeoff refers to a choice between algorithmic solutions of a data
processing problem that allows one to decrease the running time of an algorithmic
solution by increasing the space to store the data and vice versa.

1.14 Suppose a data set S contains n elements.

(a) Compare the running time 7, of the hnear search algorithm with the running tme 7,
of the binary search algorithm when (1) n = 1000 and (11) n = 10 000.
(b) Discuss searching for a given item 1n S when S 1s stored as a linked list.

(a) Recall (Sec. 1.5) that the expected running of the linear search algorithm is fin) = n/2 and
that the binary search algorithm 1s f{n) = log, n. Accordingly, (1) for n = 1000, 7, = 500
but 7, = log, 1000 = 10; and (ii) for n = 10 000, T, = 5000 but 7, = log, 10 000 = 14.

(b) The binary search algorithm assumes that one can directly access the middle element 1n
the set S. But one cannot directly access the middle element in a linked list. Hence one
may have to use a linear search algorithm when § is stored as a linked list.

1.15 Consider the data in Fig. 1.19, which gives the different flights of an airline. Discuss
different ways of storing the data so as to decrease the time in executing the following:

(a) Find the origin and destination of a flight, given the flight number.
(b) Given city A and city B, find whether there is a flight from A to B, and if there is,
find 1ts thight number.

Introduction and Overview 1.19

(a) Store the data of Fig. 1.19(b) in arrays ORIG and DEST where the subscript is the
flight number, as pictured in Fig. 1.21(a).

(b) Store the data of Fig. 1.19(b) in a two-dimensional array FLIGHT where FLIGHT[J,
K] contains the flight number of the flight from CITY[J] to CITY[K], or contains 0
when there is no such flight, as pictured in Fig. 1.21(b).

ORIG DEST FLIGHT 1 2 3 4 5
701 2 3 1 0 0 0 715 0
702 3 2 2 0 0 | 701 0 | 711
703 0 0 3 0 702 0 | 708 0
704 0 0 4 0 0 0 0o | 718
705 5 3 5718 | M2 | 705 | 717 0
706 0 0 (b)
715 1 4
716 0 0
17 5 4
718 4 5

(a)
Fig. 1.21

.16 Suppose an airhine serves n ciies with s flights, Discuss drawbacks to the data
represéntanions used m Fig 1.21(a) and Fig. 1.21th).

(a) Suppose the flight numbers are spaced very far apart; 1.e. suppose the ratio of the
number s of flights to the number of memory locations is very small, e.g. approximately
0.05. Then the extra storage space may not be worth the expense.

(b) Suppose the ratio of the number s of flights to the number n of memory locations in the
array FLIGHT is very small, i.e. that the array FLIGHT 1is one that contains a large
number of zeros (such an array is called a sparse matrix). Then the extra storage space
may not be worth the expense.

1.17 List examples of hncar data structures.

Arrays, linked lists, stacks and queues are examples of linear data structures.

1.18 Detine Absiract Bata Type. Explain 1t briefly.

An abstract data type can be defined as a data declaraton packaged together with the
operations that are meaningful for the data type. In other words, we encapsulate the data
and the operations on the data, and then we hide them from the user.

1.20

Data Structures with C

MULTIPLE CHOICE QUESTIONS.

1.1

1.2

1.3

1.4

1.5

1.6

L7

1.8

1.9

refers to a single unit of values.

(a) Group item (b) Data item
(¢c) Elementary item (d) Basic ilem
A _____is something that has
certain attributes or properties which
may be assigned values.
(a) Field (b} Record
(¢) Entity (d) File

1s the collection of records of
the entities in a given entity set.
(1) Field (b) Record
(c) Entity (d) File
The value in a field uniquely
determines the record in a file.
(a) Primary key (b) Secondary key
(¢) Key (d) Pointer
In length records, file records
may contain different lengths,
(a) Fixed (b) Primary
(¢) Variable (d) Entity
is the logical or mathemati-
cal model of a particular organization
of data.
(a) Structure (b) Varable
(¢) Function (d) Data Structures
Which of the following is not a primi-
tive data structure?
(a) Boolean (b) Integer
(c) Arrays (d) Character
Which of the following is a non-linear
data structure?
(a) Array
(¢) Stack

(b) Linked List

(d) Graph
is also called last-in-first-out
(LIFO) system

1.10

1.11

1.12

1.13

1.14

1.15

(a) Queue (b) Stack
(¢) Graph (d) Tree
is also called first-in first-
out (FIFQ) system.
(a) Tree (b) Stack
(c) Queue (d) Graph

Which of the following operations ac-
cesses each record exactly once so that
certain items may be processed?

(a) Inserting (b) Deleting

(¢) Traversing (d) Searching

_ is a data structure that con-
tains a relationship between a pair of
elements, which 1s not necessarily hier-
archical in nature.

(a) Tree (b) Graph
(c) Array (d) String
_— __ Involves arranging the

records 1n a logical order.
(a) Merging (b) Sorting
(c) Traversing (d) Searching

15 a set of data values and
associated operations that are specified
accurately, independent of any particu-
lar implementation.
(a) Stack
(b) Tree
(¢) Abstract Data Type
(d) Graph
Which of the following operations
combine records in two different sorted
files into a single sorted file?
(a) Inserting (b) Sorting
(¢) Searching (d) Merging

ANSWERS TO MULAIPLE CHOIEE QUESTIONS

1.1 (b)
1.9 (d)

1.2 (¢)
1.10 (¢)

1.3 (d)
1.11 (¢)

1.4 (a)
1.12 (b)

1.5 (a)
.13 (b)

1.14 (¢)

1.6 (d) 1.7 (¢)

L1S (d)

1.8 (d)

Preliminaries

- o 1 - - L e e

2.1 INTRODUCTION

The development of algorithms for the creation and processing of data structures is a major feature
of this text. This chapter describes, by means of simple examples, the format that will be used to
present our algorithms. The format we have selected is similar to the format used by Knuth in his
well-known text Fundamental Algorithms. Although our format is language-free, the algorithms
will be sufficiently well structured and detailed so that they can be easily translated into some
programming language such as Pascal, C, etc. In fact going forward, the algorithms will be
implemented using the C language throughout the text.

Algorithms may be quite complex. The computer programs implementing the more complex
algorithms can be more easily understood if these programs are organized into hierarchies of
modules similar to the one in Fig. 2.1. In such an organization, each program contains first a main
module, which gives a general description of the algorithm; this main module refers to certain
submodules, which contain more detailed information than the main module; each of the submodules
may refer to more detailed submodules; and so on. The organization of a program into such a
hierarchy of modules normally requires the use of certain basic flow patterns and logical structures
which are usually associated with the notion of structured programming. These flow patterns and
logical structures will be reviewed in this chapter.

The chapter begins with a brief outline and discussion of various mathematical functions which
occur in the study of algorithms and in computer science in general, and the chapter ends with a
discussion of the different kinds of variables that can appear in our algorithms and programs.

The notion of the complexity of an algorithm is also covered in this chapter. This important
measurement of algorithms gives us a tool to compare different algorithmic solutions to a particular
problem such as searching or sorting. The concept of an algorithm and its complexity is fundamental
not only to data structures but also to almost all areas of computer science.

2.2 Data Structures with C

Main
moduie

| | |

Fig. 21 A Hierarchy of Modules

2.2 MATHEMATICAL NOTATIONS AND FUNCTIONS

This section gives various mathematical functions which appear very often in the analysis of
algorithms and in computer science in general, together with their notation.

Floor and Ceiling Functions

Let x be any real number. Then x lies between two integers called the floor and the ceiling of x.
Specifically,

LxJ, called the floor of x, denotes the greatest integer that does not exceed x.
| x|, called the ceiling of x, denotes the least integer that is not less than x.

If x is itself an integer, then [x] = [x]; otherwise Lx] + 1 =[x].

Example 2.1
Atk ag o LSk o |58 8] ==8; 2 P}
[3.141=4, [J5]1=3 [-85|=-8, [7l=?

Remainder Function; Modular Arithmetic
Let k be any integer and let M be a positive integer. Then

k (mod M)

(read k modulo M) will denote the integer remainder when k is divided by M. More exactly,
k (mod M) is the unique integer r such that

Preliminaries 2.3

k=Mg+r where O0<r<M
When £ is positive, simply divide £ by M to obtain the remainder r. Thus
25 (mod 7) = 4, 25 (mod 5) = 0, 35 (mod 11) = 2, 3 (mod 8) =3

Problem 2.2(b) shows a method to obtain k (mod M) when k is negative,
The term “mod” is also used for the mathematical congruence relation, which is denoted and
defined as follows:

a=b{mod M) ifand only if M divides b -a

M 1s called the modulus, and a = b (mod M) is read “a is congruent to » modulo M.” The following
aspects of the congruence relation are frequently useful:

O=Mmod M) and axM=aq (mod M)

Arithmetic modulo M refers to the arithmetic operations of addition, multiplication and subtraction
where the arithmetic value is replaced by its equivalent value in the set

(0,1,2,....M~-1}
or in the set

(1,2, 2, M]
For example, in arithmetic modulo 12, sometimes called “clock™ arithmetic,
6+9=3, 7x5=1l, 1-5=8, 2+10=0=12
(The use of 0 or M depends on the application.)

Integer and Absolute Value Functions

Let x be any real number, The integer value of x, written INT(x), converts x into an integer by
deleting (truncating) the fractional part of the number. Thus

INT(3.14) = 3, INT {_'\fg} =2, INT(-8.5)=-8, INT(7)=7

Observe that INT(x) = Lx] or INT(x) = [x| according to whether x is positive or negative.,

The absolute value of the real number x. written ABS(x) or lxl, is defined as the greater of x or
—-x. Hence ABS(0) = 0, and, for x # 0, ABS(x) = x or ABS(x) = —x, depending on whether x 18
positive or negative. Thus

151 =15, 171=7, [-3.331 = 3.33, K4l =444, |-0.075 = 0.075

We note that x| = I-x] and, for x # 0, Ix| 1s positive.

Summation Symbol; Sums

Here we introduce the summation symbol X (the Greek letter sigma). Consider a sequence a,, a,,
as, Then the sums

a +a,+ -+a, and a,+a,, + - +a,

will be denoted, respectively, by

e 7 Data Structures with C

The letter j in the above expressions is called a dummy index or dummy variable. Other letters
frequently used as dummy variables are i, k, s and 1.

i ab;=a,b, + a,b, + --- + a,b,
1=1

ij2=22+33+42+52=4+9+1ﬁ+25-54
j=2

J=1424+ - %n
j=1

The last sum in Example 2.2 will appear very often. It has the value n(n + 1)/2. That is,
nin+1)
2

14243+ +n=

Thus, for example,

50(51
1+24+ - +50= (2)=l275

Factorial Function

The product of the positive integers from 1 to n, inclusive, is denoted by n! (read “n factorial™).
That 1s,

nl=1-2-3«.(n=2)(n-1)n
It is also convenient to define 0! = 1.

Example 2.3

(a) 2 - 12w W12 3w6 Alet2-F4=aR
(b) For 7> 1, we have n! = n-(n - 1)! Hence
5! = 5:4! = 5.24 = 120; 6! = 6-5! = 6-120 = 720

Permutations

A permutation of a set of n elements is an arrangement of the elements in a given order. For
example, the permutations of the set consisting of the elements a, b, ¢ are as follows:

abec, acb, bac, bca, cab, cba

One can prove: There are n! permutations of a set of n elements. Accordingly, there are 4! = 24
permutations of a set with 4 elements, 5! = 120 permutations of a set with 5 elements, and
SO on.

Prefiminaries 2.5

Exponents and Logarithms
Recall the following definitions for integer exponents (where m is a positive integer):

a"=aq-a - a{mtmes), a'=1, a™= 1

ﬂﬂl

Exponents are extended to include all rational numbers by defining, for any rational number m/n,

L]
ﬂmfn= rn Hnl =(n H)

For example,

2 = 16. 24 = L='.|25-’”3=51=25
)

i—

In fact, exponents are extended to include all real numbers by defining, for any real number x,

a'= hm o where r1s a rational number
r=x

Accordingly, the exponential function f(x) = a* is defined for all real numbers.
Logarithms are related to exponents as follows. Let » be a positive number. The logarithm of
any positive number x to the base b, written

log, x
represents the exponent to which & must be raised to obtain x. That 1s,
v=log,x and » =x
are equivalent statements. Accordingly,

log, 8=3 since 2°=8; log, 100 =2 since 10° = 100
log, 64 = 6 since 2°=64; log,, 0.001 = -3 since 10~ = 0.001

Furthermore, for any base b,
log, 1 =0 since b" =1
log, b=1 since b'=b

The logarithm of a negative number and the logarithm of 0 are not defined.
One may also view the exponential and logarithmic tfunctions
Hx)=b" and glx) = log, x

as inverse functions of each other. Accordingly, the graphs of these two functions are related. (See
Solved Problem 2.5.)

Frequently, logarithms are expressed using approximate values. For example, using tables or
calculators, one obtains

I'U'g"] 3n0 = 2.477] and I")g:' 4[} = 3.6889

as approximate answers. (Here ¢ = 2. 718281 ---.)

2.6 Data Structures with C

Logarithms to the base 10 (called common logarithms), logarithms to the base e (called natural
logarithms) and logarithms to the base 2 (called binary logarithms) are of special importance.
Some texts write:

In x instead of log, x
lg x or Log x instead of log, x

This text on data structures is mainly concerned with binary logarithms. Accordingly,
The term log x shall mean log, x unless otherwise specified. I

Frequently, we will require only the floor or the ceiling of a binary logarithm. This can be
obtained by looking at the powers of 2. For example,

Llog, 100/]=6 since 26=64 27 =128
[log, 1000]= 10 since 2° =512 and 2'°=1024

and so on.

2.3 ALGORITHMIC NOTATIONS

An algorithm, intuitively speaking, is a finite step-by-step list of well-defined instructions for
solving a particular problem. The formal definition of an algorithm, which uses the notion of a
Turing machine or its equivalent, is very sophisticated and lies beyond the scope of this text. This

section describes the format that is used to present algorithms throughout the text. This algorithmic
notation 1s best described by means of examples.

Example 2.4

An array DATA of numerical values is in memory. We want to find the location LOC and the value
MAX of the largest element of DATA. Given no other information about DATA, one way to solve the
problem is as follows:

Initially begin with LOC = 1 and MAX = DATA[1]. Then compare MAX with each successive
element DATA[K] of DATA. If DATA[K] exceeds MAX, then update LOC and MAX so that LOC = K and

MAX = DATA[K]. The final values appearing in LOC and MAX give the location and value of the
largest element of DATA.

A formal presentation of this algorithm, whose flow chart appears in Fig. 2.2, follows.

Algorithm 2.1: (Largest Element in Array) A nonempty array DATA with N numerical values is
given. This algorithm finds the location LOC and the value MAX of the largest
element of DATA. The variable K is used as a counter.

Step 1. [Initialize.] Set K : = 1, LOC : = 1 and MAX : = DATA[1].
Step 2. [Increment counter.] Set K : = K + 1.
Step 3. [Test counter.] If K > N, then:
Write: LOC, MAX, and Exit.
Step 4. [Compare and update.] If MAX < DATA[K], then:
Set LOC : = K and MAX : = DATA[K].
Step 5. [Repeat loop.] Go to Step 2.

Preliminaries 2.7

(o)
l

Ke=1
LOC«1
MAX—DATA[1]

e

I KK + 1

e -/ Write: LOC, MAX /

l
(STOP)

Is MAX < DATA[K]?

LOC«K
MAX«—DATA[K]

Fig. 2.2

/* C implementation of Algorithm 2.1 */
#include <stdio.h>
#include <conio.h>

void main()

{
int DATA[10]=(22,65,1,99,32,17,74,49,33,2};

int N, LOC, MAX, K;
N=10;

K=0;

LOC=0;

MAX=DATA[O];
clrser():;

2.8 Data Structures with C

loop:

K=K+1;

1i£(K==N)

{
printf({*LOC = %d, MAX= %d4d",LOC,MAX);
getch{});
exit () ;

}
1E(MAX<DATALIK])
{

LOC=K;
“MAX=DATA[K] ;
5
goto loop;

}

Output:
LOC = 3, MAX= 99

Remark: In C, an array begins with an index value of O instead of 1. For instance, an array A[10]
will have index values O, 1, 2,....8, Y.

The format for the formal presentation of an algorithm consists of two parts. The first part is a
paragraph which tells the purpose of the algorithm, identifies the variables which occur in the
algorithm and lists the input data. The second part of the algorithm consists of the list of steps that
1§ to be executed.

The following summarizes certain conventions that we will use in presenting our algorithms.
Some control structures will be covered in the next section.

Identifying Number

Each algorithm is assigned an identifying number as follows: Algorithm 4.3 refers to the third
algorithm in Chapter 4; Algorithm P3.3 refers to the algorithm in Solved Problem 5.3 in Chapter 3.
Note that the letter “P” indicates that the algorithm appears in a problem.

Steps, Control, Exit

The steps of the algorithm are executed one after the other, beginning with Step 1, unless indicated

otherwise. Control may be transferred to Step n of the algorithm by the statement “Go to Step #.” For

example, Step 5 transfers control back to Step 2 in Algorithm 2.1. Generally speaking, these Go to

statements may be practically ehiminated by using certain control structures discussed in the next section.
If several statements appear in the same step, e.g.,

Set K := 1, LOC := 1 and MAX := DATA[I].

then they are executed from left to right.
The algorithm is completed when the statement

Exit.
15 encountered. This statement i1s similar to the STOP statement used in FORTRAN and in flowcharts.

Prefiminaries 2.9

Comments

Each step may contain a comment in brackets which indicates the main purpose of the step. The
comment will usually appear at the beginning or the end of the step.

Variable Names

Variable names will use capital letters, as in MAX and DATA. Single-letter names of variables
used as counters or subscripts will also be capitalized in the algorithms (K and N, for example),
even though lowercase may be used for these same variables (kK and n) in the accompanying
mathematical description and analysis. (Recall the discussion of italic and lowercase symbols in
Sec. 1.3 of Chapter I, under “Arrays.”)

Assignment Statement

Qur assignment statements will use the dots-equal notation := that is used in Pascal. For example,
Max := DATA[I]

assigns the value in DATA[1] to MAX. In C language, we use the equal sign = for this operation.

Input and Output

Data may be input and assigned to variables by means of a Read stateme. with the following
form:

Read: Vanables names.

Similarly, messages, placed in quotation marks, and data in variables may be output by means of a
Write or Print statement with the following form:

Write: Messages and/or variable names.

Procedures

The term “procedure” will be used for an independent algorithmic module which solves a particular
problem. The use of the word “procedure” or “module” rather than “algorithm” for a given
problem is simply a matter of taste. Generally speaking, the word “algorithm™ will be reserved for
the solution of general problems. The term “procedure” will also be used to describe a certain type
of subalgorithm which is discussed in Sec. 2.6.

2.4 CONTROL STRUCTURES

Algorithms and their equivalent computer programs are more easily understood if they mainly use
self-contained modules and three types of logic, or flow of control, called

. Sequence logic, or sequential flow

2. Selection logic, or conditional flow

3. Iteration logic, or repetitive flow
These three types of logic are discussed below, and in each case we show the equivalent

flowchart.

_z.m. Data Structures with C

Sequence Logic (Sequential Flow)

Sequence logic has already been discussed. Unless instructions
are given to the contrary, the modules are executed in the obvious
sequence. The sequence may be presented explicitly, by means
of numbered steps, or implicitly, by the order in which the
modules are written. (See Fig. 2.3.) Most processing, even of
complex problems, will generally follow this elementary flow
pattern.

Selection Logic (Conditional Flow)

Selection logic employs a number of conditions which lead to a
selection of one out of several alternative modules. The structures
which implement this logic are called conditional structures or
If structures. For clarity, we will frequently indicate the end of
such a structure by the statement

[End of If structure.]
or some equivalent.

Algorithm
Module A
Module B

Module C

Fig. 2.3

Flow chart equivalent

l

Module A |

Module B \

l

Module C

|

Sequence Logic

These conditional structures fall into three types, which are discussed separately.

1. Single Alternative. This structure has the form

If condition, then:
[Module A

[End of If structure.]

The logic of this structure is pictured in Fig. 2.4(a). If the condition holds, then Module A, which
may consist of one or more statements, 1S executed; otherwise Module A 1s skipped and control

transfers to the next step of the algorithm.

1

no Condition? L
Yes
Y
Module A Module A Module B
et -
\ Y
(a) Single alternative. (b} Double alternative.

Fig. 2.4

Preliminaries 2.11

2. Double Alternative. This structure has the form

If condition, then:
[Module A]
Else:
[Module B]
[End of If structure.]
The logic of this structure is pictured in Fig. 2.4(b). As indicated by the flow chart, if the
condition holds, then Module A is executed; otherwise Module B is executed.

3. Multiple Alternatives. This structure has the form
If condition(l), then:
[Modile A,]
Else if condition(2), then:
[Module A,]

Else if condition(M), then:
[Module A,,]

Else:
[Module B]

[End of If structure.]

The logic of this structure allows only one of the modules to be executed. Specifically, either the
module which follows the first condition which holds is executed, or the module which follows the
final Else statement is executed. In practice, there will rarely be more than three alternatives.

The solutions of the quadratic equation
ax’ + bx + c =0
where a # 0, are given by the quadratic formula

~b+ b - 4ac
2a
The quantity D = b® - 4ac is called the discriminant of the equation. If D is negative, then there
are no real solutions. If D = 0, then there is only one (double) real solution, x = - b/2a. If D is

positive, the formula gives the two distinct real solutions. The following algorithm finds the
solutions of a quadratic equation.

X =

Algorithm 2.2: (Quadratic Equation) This algorithm inputs the coefficients A, B, C of a quadratic
equation and outputs the real solutions, if any.
Step 1. Read: A, B, C.
Step 2. Set D: = B? - 4AC.
Step 3. If D > 0, then:

(a) Set X1 := (-B + JD)/2A and
X2 1= (-B - /D)/2A.

242 Data Structures with C

(b) Write: X1, X2.
o U HseifD =0, then:

[End uf If shlﬁu“’"l' i
Cstep 4, Bit. ,

Remark: Observe that there are three mutually excluswe mndxuons in Stcp 3 of Algonthm 2. 2 that
depend on whether D is positive, zero or negative. In such a situation, we may alternatively list the
different cases as follows:

Step 3. 1. If D > 0, then:

2. If D =0, then:

LR

3. If D <0, then:

R R E R

grC imlmtatiun oﬂ qur;l. f
“#i:ncluﬂa? <atAdo b T A
r"ﬂiﬁdiﬂdm’ ﬁmfh"‘ ,'(: % 3 i 28

:iinul?uﬁa* <math.h> : :

= .f-;vn_id' _-min_ H |

3 *E‘Ii'lit‘.r ':h)!'.?

AT
"‘hf‘,

prince(-Enter

E
Fh
F;
oe
ﬁ
o
Q-
ot :i‘-ﬁ:

M*B-l*h*f‘.‘:

et A
~
¥

iﬂﬁw}
{ i 4 x| L*-.

X2=((-1) w—mt?
_ pri.ntf{‘ﬂ'-t t 2!
2
'alse if(D==0}
Y | N
x'(1) ’BIQ*A‘ R RS R
| prtnt!.{‘mauz |
else :
.printft‘m ﬁnu. sqwr:r.ons*)

-

Copyrighted material

Preliminaries 2.13

getch();
}

Output:
Enter the values of A, B and C: 1

Xl= 4.00, X2= -1.00

lteration Logic (Repetitive Flow)

The third kind of logic refers to either of two types of structures involving loops. Each type begins
with a Repeat statement and is followed by a module, called the body of the loop. For clarity, we
will indicate the end of the structure by the statement

[End of loop.]
or some equivalent.
Each type of loop structure is discussed separately.
The repeat-for loop uses an index variable, such as K, to control the loop. The loop will usually

have the form:
Repeat for K=R to S by T:

[Module]
[End of loop.]

The logic of this structure is pictured in Fig. 2.5(a). Here R is called the initial value, S the end
value or test value, and T the increment. Observe that the body of the loop is executed fitst with
K =R, then with K =R + T, then with K = R + 2T, and so on. The cycling ends when K > S. The
flow chart assumes that the increment T is positive; if T is negative, so that K decreases in value,
then the cycling ends when K < S.

1

| K=R
v.s m.
No Yes
Module Module
(body of loop) (body of loop)
—_— K=K+T
(a) Repeat-For structure. (a) Repeat-While structure.

Fig. 2.5

2.14 Data Structures with C

The repeat-while loop uses a condition to control the loop. The loop will usually have the form
Repeat while condition:
[Module]
[End of loop.]
The logic of this structure is pictured in Fig. 2.5(b). Observe that the cycling continues until the
condition is false. We emphasize that there must be a statement before the structure that initializes
the condition controlling the loop, and in order that the looping may eventually cease, there must
be a statement in the body of the loop that changes the condition.

; - s . o - :
¥ F e . F
j '

Mgorlthm 2.1 is rewritten using a repea.t-whﬂe loop rather than a Go to stablme

-‘I'I-J..l

Alprltlm 2.3: (Largest Element in Amy),. Givgn a nqnempty array B&%’A mth ll
numerical values, this algorithm finds the locatmn LB'C and thch\;nhf]

MAX of the largest elﬁnm;l: of DATA. r X
1. - ([Initialize.] Set K := 1, LOC = 1 and mx - umm 74 T f&%

2.5 Romest Stims. 3,004 4‘*‘”" K SN > _t: A7 SR ff“ B
3- : If m < DATA[E]'. “!‘“— 't qt# i g 1 : , 48 A -:-: el
3 Set LOC := Kand nax i m_n_m

[End qufstructurG.}f‘ o iy h s A '-'.-'l
4, SetK:=K+1. - A _hr: :.' t?*

,.[End GfStﬁFZr . . }-» e ., o ykas ~all T *r .4 ; 'h
o - g Exit»';:_',,‘-,-v L GG T A Ly

L% C implmentntiqn gf fi&guithm - 3*/
#include <stdio.h> B4 &
#include <conio.h> h*‘- ;

&= _ '_#k :..I : 15 : _ : :-.‘.. . - e)
void main() . r o .
(AL
int DATA[10]= {22 65 1 39.32 1'? 74 49,33, 2}, TR 5,
int N, LOC, MAX, Ki ol 8 X ”"
N=10; e ,: ; A ‘ Sprept B Tal
Ezﬁ; o : -,,-':_ “
LOC=0; . Rty Wt
MAX=DATA[O]; '_ 5L .
clrscr(); g :
while (K<N) S g ¥ i) RES | -

if (MAX<DATA[K])

Preliminaries 2.15

{
LOC=K;
MAX=DATAI[K)] ;

)
K=K+1:;

}

printf (*LOC= %d, MAX= %d”",LOC,MAX);
getch();
}

Output:
LOC = 3, MAX= 99

Algorithm 2.3 indicates some other properties of our algorithms. Usually we will omit the word
“Step.” We will try to use repeat structures instead of Go to statements. The repeat statement may
explicitly indicate the steps that form the body of the loop. The “End of loop™ statement may explicitly
indicate the step where the loop begins. The modules contained in our logic structures will normally
be indented for easier reading. This conforms to the usual format in structured programming.

Any other new notation or convention either will be self-explanatory or will be explained when
it occurs.

2.5 COMPLEXITY OF ALGORITHMS

The analysis of algorithms is a major task in computer science. In order to compare algorithms, we must
have some criteria to measure the efficiency of our algorithms. This section discusses this important topic.

Suppose M is an algorithm, and suppose n is the size of the input data. The time and space used
by the algorithm M are the two main measures for the efficiency of M. The time is measured by
counting the number of key operations—in sorting and searching algorithms, for example, the
number of comparisons. That is because key operations are so defined that the time for the other
operations is much less than or at most proportional to the time for the key operations. The space
is measured by counting the maximum of memory needed by the algorithm.

The complexity of an algorithm M is the function fin) which gives the running time and/or
storage space requirement of the algorithm in terms of the size n of the input data. Frequently, the
storage space required by an algorithm is simply a multiple of the data size n. Accordingly, unless
otherwise stated or implied, the term “complexity™ shall refer to the running time of the algorithm.

The following example illustrates that the function f{n), which gives the running time of an
algorithm, depends not only on the size n of the input data but also on the particular data.

Example 2.7

Suppose we are given an English short story TEXT, and suppose we want to search through TEXT
for the first occurrence of a given 3-letter word W. If W is the 3-letter word “the,” then it is likely
that W occurs near the beginning of TEXT, so f(n) will be small. On the other hand, if W is the
3-letter word “zoo,” then W may not appear in TEXT at all, so f(n) will be large.

2.16 Data Structures with C

The above discussion leads us to the question of finding the complexity function f{n) for certain
cases. The two cases one usually investigates in complexity theory are as follows:

I. Worst case: the maximum value of f{in) for any possible input

2. Average case: the expected value of fin)

Sometimes we also consider the minimum possible value of fin), called the best case.

The analysis of the average case assumes a certain probabilistic distribution for the input data; one
such assumption might be that all possible permutations of an input data set are equally likely. The
average case also uses the following concept in probability theory. Suppose the numbers ny, n,, ..., n;
occur with respective probabilities p,, ps, ..., pi. Then the expectation or average value E is given by

E=np, +np; + -+ mp,
These ideas are illustrated in the following example.

Suppose a linear array DATA contains n elements, and suppose a speciﬁc ITEM of mformatim is
given. We want either to find the location LOC of ITEM in the array DATA, or to send some
message, such as LOC = 0, to indicate that ITEM does not appear in DATA. The linear seaﬂ:h_;'
algorithm solves this problem by comparing ITEM, one by one, with each element in DATA. That is,
we compare ITEM with DATA[1], then DATA[2], and so on, until we find LOC such that ITEM -
DATA[LOC]. A formal presentation of this al.gonthm follows. 5

Algorithm 2.4: (Linear Search) A linear array DATA with N elements and a specific
ITEM of information are given. This algorithm ﬁnds the lncarl:inn LOC

of ITEM in the array DATA or sets LOC = 0.
1. [Initialize] Set K := 1 and LOC := 0.
RepeatShepsSmd4whileLOC-Oand K<N.
| If ITEM = DATA[K], then: Set LOC: = K. wid
"SetK:=K+ 1. Ilncrementstcounter]
-[EndofStelemp] 7
[Successful?] Sl ST - e R RN A T
If LOC = 0, then: ' AR i e
Write: ITEM is not in the array DkTA -

un
-

. ‘Write: LOC is the lm:ation ofII'EM , AR el
- et 5tru:ture.] sl e RASUREE Y.
B T ;;‘.:* il

/* C implementation of hlgaritham 2.4*/ _ |
#include’ <stdio.h> = . ’ | Segde ?; S
#include <conio.h> ' T =,

int DATA[10)={22,65;1,99,32,17,74,49,33,2}; e o B

Preliminaries 2.17

int ITEM=17;
int N, LOC, K:
N=10;

K=0;:

LOC=~1;
clrscr();

while (LOC==-]1 && K<N)

{
1f (ITEM==DATA [K])

LOC=K;
K=K+1;
}
1f (LOC==-1)
printf (*ITEM is not in the array DATA");
else

printf("%d is the location of ITEM”,LOC);

getchi);
)

Output:
5 is the location of ITEM

The complexity of the search algorithm is given by the number C of comparisons between
ITEM and DATA[K]. We seek C(n) for the worst case and the average case.

Worst Case

Clearly the worst case occurs when ITEM is the last element in the array DATA or is not there at

all. In either situation, we have
Cin) =n

Accordingly, C(n) = n is the worst-case complexity of the linear search algorithm.

Average Case

Here we assume that ITEM does appear in DATA, and that it is equally likely to occur at any
position in the array. Accordingly, the number of comparisons can be any of the numbers 1, 2,
3, ..., n, and each number occurs with probability p = 1/n. Then

—

C(n)

i

2 n 2

2.18 Daia Structures with C

This agrees with our intuitive feeling that the average number of comparisons needed to find the
location of ITEM 1s approximately equal to half the number of elements in the DATA list.

Remark: The complexity of the average case of an algorithm is usually much more complicated to
analyze than that of the worst case. Moreover, the probabilistic distribution that one assumes for
the average case may not actually apply to real situations. Accordingly, unless otherwise stated or
implied, the compiexity of an algorithm shall mean the function which gives the running time of
the worst case in terms of the input size. This is not too strong an assumption, since the complexity
of the average case for many algorithms is proportional to the worst case,

Rate of Growth; Big O Notation

Suppose M is an algorithm, and suppose n is the size of the input data. Clearly the complexity fin)
of M increases as n increases. It is usually the rate of increase of fin) that we want to examine.
This is usually done by comparing f{n) with some standard function, such as

log, n, n logy n, ne, n?, i

The rates of growth for these standard functions are indicated in Fig. 2.6, which gives their
approximate values for certain values of n. Observe that the functions are listed in the order of
their rates of growth; the logarithmic function log, n grows most slowly, the exponential function
2" grows most rapidly, and the polynomial functions n° grow according to the exponent ¢. One
way 1o compare the function fin) with these standard functions is to use the tfunctional O notation
defined as follows:

———
g(n)
2 log n n nlog n ne ns 2"
|
5 3 S 15 25 125 32
10 4 10 40 100 104 109
100 7 100 700 104 106 1070
1000 10 107 104 108 109 10350

Rate of Growth of Standard Functions

Fig. 2.6

Suppose f(n) and g(n) are functions defined on the positive integers with the property that fn)
is bounded by some multiple of gin) for almost all n. That is. suppose there exist a positive integer
ny and a positive number M such that, for all » > n,, we have

f(n)t < Mlg(n)l
Then we may write
fin) = O(g(n))

which is read “f(n) is of order g(n).” For any polynomial P(n) of degree m, we show in Solved
Problem 2.10 that P(n) = O(n™); e.g.,

8n' — 576n" + 832n - 248 = O(n?)

Preliminaries 2.19

We can also write
fin)= hin) + O(g(n)) when f(n)~ hin) = O(g(n))

(This is called the “big O" notation since f(n) = o(g(n)) has an entirely different meaning.)

To indicate the convenience of this notation, we give the complexity of certain well-known
searching and sorting algorithms:

(a) Linear search: O(n)

(b) Binary search: O(log n)

(¢) Bubble sort: O(n*)

(d) Merge-sort: O(n log n)

These results are discussed in Chapter 9, on sorting and searching.

26 OTHER ASYMPTOTIC NOTATIONS FOR COMPLEXITY
OF ALGORITHMS Q, ©, o

The “big O” notation defines an upper bound function g(n) for fin) which represents the time/
space complexity of the algorithm on an input characteristic n. There are other asymptotic notations
such as £2, ©, o which also serve to provide bounds for the function fin).

Omega Notation (2)
The omega notation is used when the function ginj} defines a lower bound for the function f{n).

Definition
Jin) = L2 g(n)) (read as f of n 158 omega of g of n), 1ff there exists a positive integer n, and a positive
number M such that [f(n)l 2 Mig(n)l, tor all n 2 n,,.

For f(n) = 18n + 9, f(n) > 18n for all n, hence fin) = Q(n). Also, for f(n) = 90n* + 18n + 6,
f(n) > 90n* for n = 0 and therefore fin) = Q(n?).

For f(n) = £2(g(n)), g(n) is a lower bound function and there may be several such functions, but it
1s appropriate that the function which i1s almost as large a function of n as possible such that the
definition of £ is satisfied, i1s chosen as g(n). Thus for example, f{n) = 5n + 1 leads to both f(n) =
Q(n) and f(n) = Q(1). However, we never consider the latter 1o be correct, since f(n)= (n) represents
the largest possible function of n satisfying the definition of £2 and hence 1s more informative,

Theta Notation (O)

The theta notation is used when the funcuon f(n) is bounded both from above and below by the
function e(n).

Definition
fin) = O(g(n)) (read as fon n is theta of g of n) iff there exist two positive constants ¢; and ¢,, and
a positive integer n, such that ¢ lg(n)l < [fin)l < ¢, lgin)l tor all n 2 ny,.

From the definition it implies that the function g(x) is both an upper bound and a lower bound
for the function f(n) for all values of n, n 2 n,. In other words, f(n) i1s such that, f(n) = O(g(n)) and
fin) = Q(g(n)).

For fin) = I8n + 9, since fin) > 18n and f(n) < 27n tor n 2 1, we have f(n) = 2(n) and
fin) = O(n) respecuvely, tor n 2 1. Hence f(n) = O(n). Again, 16n" + 30n — 90 = O(n?) and 7.2" +
30n = O(27).

2.20 Data Structures with C

Little Oh Notation (0)

Definition
f(n) = o(g(n))(read as f of n is little oh of g of n) iff f(n) = O(g(n)) and f(n) # L2(g(n)).
For f(n)=18n+9, we have f(n) = O(n*) but f(n) # Q(n?®). Hence f(n) = o(n*). However, f(n) # o(n).

2.7 SUBALGORITHMS

A subalgorithm is a complete and independently defined algorithmic module which is used (or
invoked or called) by some main algorithm or by some other subalgorithm. A subalgorithm receives
values, called arguments, from an originating (calling) algorithm; performs computations; and
then sends back the result to the calling algorithm. The subalgorithm is defined independently so
that it may be called by many different algorithms or called at different times in the same algorithm.
The relationship between an algorithm and a subalgorithm is similar to the relationship between a
main program and a subprogram in a programming language.

The main difference between the format of a subalgorithm and that of an algorithm is that the
subalgorithm will usually have a heading of the form

NAME(PAR,, PAR,, ..., PAR,)

Here NAME refers to the name of the subalgorithm which is used when the subalgorithm is called,
and PAR,, PAR,, ..., PARy refer to parameters which are used to transmit data between the sub

algorithm and the calling algorithm.

Another difference is that the subalgorithm will have a Return statement rather than an Exit
statement; this emphasizes that control is transferred back to the calling program when the execution
of the subalgorithm is completed.

Subalgorithms fall into two basic categories: function subalgorithms and procedure subalgorithms.
The similarities and differences between these two types of subalgorithms will be examined below
by means of examples. One major difference between the subalgorithms is that the function
subalgorithm returns only a single value to the calling algorithm, whereas the procedure subalgorithm
may send back more than one value.

Example 2.9

The following function subalgorithm MEAN finds the average AVE of three numbers A, B and C.
Function 2.5: MEAN(A, B, ()
1. Set AVE := (A + B + ()/3.
2. Return(AVE).
Note that MEAN is the name of the subalgorithm and A, B and C are the parameters. The Return
statement includes, in parentheses, the variable AVE, whose value is returned to the calling program.
The subalgorithm MEAN is invoked by an algorithm in the same way as a function subprogram is
invoked by a calling program. For example, suppose an algorithm contains the statement
Set TEST := MEAN(T,, T,, T,)
where T,, T, and T; are test scores. The argument values T,, T, and T, are transferred to the
parameters A, B, C in the subalgorithm, the subalgorithm MEAN is executed, and then the value of
AVE 1s returned to the program and replaces MEAN(T,, T,, T;) in the statement. Hence the average
of T,, T, and T; is assigned to TEST.

Preliminaries Y ¢

The following C program uses the MEAN function to calculate the average AVE of three numbers A,
B and C:

 #include <stdio.h>
! riin‘cluda <conio.h>

*

.ixwid main ()
;.q’fu{ ¥
int. A, B,C |
flﬂ'ﬂt llml‘.int 111t; lnt)r
clrscr().
{printf(‘l!nter the values of A, B and C: ");
“ﬂcmf(‘%d ¥d %d4d”, &A,&B, &C) ; '
_lJrlntf{‘Thn average of %d, %d and %d is: %.2f",A,B,C,MEAN(A,B,C));
hﬁgatgh(), ' $ag i AT
&y

float MEAN(int T1,int T2,int T3)

'8

. float AVE; R
. AVE=(T1+T2+T3)/3; | s
. return(AVE) ; Vgt

4 '}

mt: | '
Enter the values of A, B and C: 22
36

8

‘The average of 22, 36 and 8 is: 22.00

The following procedure SWITCH mterchanges the values of AAA and BBB
| _Mu 2.6: SWITCH(AAA, BBB)
- 1. Set TEMP := AAA, AAA := BBB and BBB := TEMP,
2. Return,
ﬁe procedure is invoked by means of a Call statement. For uample the Call statement

| Call SWITCH(BEG, AUX)
Iﬁs the net effect of inmrchang'ing the values of BEG and AUX. Spedﬁcally, when the pmcedure
- SWITCH is invoked, the argument of BEG and AUX are transferred to the parameters AAA and BBB,

respectively; the procedure is executed, which interchanges the values of AAA and BBB~ and then
the new values of AAA and BBB are transferred back to BEG and AUX, respectively. =~

Remark: Any function subalgorithm can be easily translated into an equivalent procedure by
simply adjoining an extra parameter which is used to return the computed value to the calling
algorithm. For example, Function 2.1 may be translated into a procedure

: ‘!

2.22 Data Structures with C

MEAN(A, B, C, AVE)
where the parameter AVE is assigned the average of A, B, C. Then the statement
Call MEAN(T,, T, and T;, TEST)

also has the effect of assigning the average of T, T and T; to TEST. Generally speaking, we will
use procedures rather than function subalgorithms.

2.8 VARIABLES, DATA TYPES

Each variable in any of our algorithms or programs has a data type which determines the code that
1s used for storing its value. Four such data types follow:
. Character. Here data are coded using some character code such as EBCDIC or ASCII. The 8-bit
EBCDIC code of some characters appears in Fig. 2.7. A single character 1s normally stored in a byte.
2. Real (or floating poinr). Here numerical data are coded using the exponential form of the data.
3. Integer (or fixed point). Here positive integers are coded using binary representation, and
negative integers by some binary variation such as 2's complement.
4. Logical, Here the variable can have only the value true or false; hence it may be coded
using only one bit, 1 for true and O for false. (Sometimes the bytes 1111 1111 and 0000
0000 may be used for true and false, respectively.)
The data types of variables in our algorithms will not be explicitly stated as with computer
programs but will usually be implied by the context.

Suppose a 32-bit memory location X contains the following sequence of bits:
0110 1100 1100 0111 1101 0110 0110 1100 o
Char. | Zone Numeric | Hex || Char. [Zone Numeric| Hex || Char. | Zone Numeric | Hex 1

' 5 11170 0010 | blank | 0100 0000 | 40
A 1100 0001 C1 ' g 0011 E3 - 1011 48
<! 0010 | C2 U 0100 | E4 < 1100 | 4C

C 0011 | C3 Vv 0101 | ES (1101 | 4D _
D 0100 | C4 w 0110 | E86 + 0100 1110 | 4E
E 0101 | C5 || X o111 | E7 & | 0101 0000 | 50
F 0110 C6 Y Y 1000 E8 $ 1011 5B

G 0111 | C7 Z 1110 1001 | E9 v l 1100 | 8C °
H Y 1000 C8 |) 1101 50D
e 1100 1001 | C9 0 1111 0000 | FO ; 0101 1110 | 5E
J 1101 0001 | D1 1 | 0001 F1 — 0110 0D0O 60
K 0010 | D2 2 0010 | F2 / 0001 61
L 001t | D3 3 0011 F3 , 1011 | 6B
M 0100 | D4 4 0100 | F4 % 1100 | 6C
N 0101 | D5 5 0101 F5 > v 1110 | 6E
0 0110 | D6 8 0110 | F6 ? 0110 1111 | 6F
P 0111 | D7 7 0111 F7 : 0111 1010 | 7A
Q ¥ 1000 | D8 8 1000 | F8 # | 1011 | 7B
R | 1101 1001 D9 9 t111 1001 Fg @ | 1100 | 7C
= 0111 1110 | 7E

Part of the EBCDIC Code

Preliminaries 2.23

There is no way to know the content of the cell unless the data type of X is known,
(a) Suppose X is declared to be of character type and EBCDIC is used. Then the four characters

%G0% are stored in X.
(b) Suppose X is declared to be of some other type, such as integer or real. Then an integer or

real number is stored in X.

The following C program demonstrates how the same value is interpreted differently based on
different associated data types:

?i’include <stdio.h>
 #include <conio.h>

- wvoid main()
1

wehar cl=s’l’;
Yidnt- 02=1;
J;clrscr(l:

“printf(“cl (char) = %c \ncl'’'s ASCII value = %d\nc2 (int) = %d”,cl,cl,c2);

‘‘getch();

¥

- Output:

wl . (char) =.1
El g ASCII wvalue
e2 (int) = 1

49

In the above program, variable ¢l treats 1 as a character while variable c2 treats 1 as an integer.

Local and Global Variables

The organization of a computer program into a main program and various subprograms has led to
the notion of local and global variables. Normally, each program module contains its own list of
variables, called local variables, which can be accessed only by the given program module. Also,
subprogram modules may contain parameters, variables which transfer data between a subprogram

and its calling program.

Gm.'-ider the prugedure S\'JITCH(MA BBB) in Example 2.10. The variables AAA and BEB are
- parameters; they are used to transfer data between the procedure and a calling algorithm. On the
“other hand, the variable TEMP in the procedure is a local variable. It “lives” only in the procedure;
" i.e., its value can be accessed and changed only during the execution of the procedure. In fact, -
the name TEMP may be used for a variable in any other module and the use of the name will not

“interfere with the execution of the procedure SWITCH.

L Data Structures with C

~ Program 2.7

/* C implementation of the SWITCH procedure */
#include <stdio.h>
#include <conio.h>

int AAA=10;
int BBB=20;
void SWITCH(void);

void main()
{

clrscri():

printf(“AAA = %4 BBB = %d",AAA,BBB);

SWITCH();
printf(*\nAfter calling SWITCH procedure, AAA = %d BBB = %d",AAA,BBB);

getch() ;
)

void SWITCH(void)

{
int TEMP;
TEMP=AAA;
AAA=BBE;
BEB=TEMP;
recurn;

}

Output:
AAA = 10 BBB = 20
After calling SWITCH procedure, AAA = 20 BBB = 10

Language designers realized that it would be convenient to have certain variables which can be
accessed by some or even all the program modules in a computer program. Variables that can be
accessed by all program modules are called global variables, and variables that can be accessed by
some program modules are called nonlocal variables. Each programming language has its own
syntax for declaring such variables. For example, FORTRAN uses a COMMON statement to
declare global variables, and Pascal uses scope rules to declare global and nonlocal variables.

Accordingly, there are two basic ways for modules to communicate with each other:

. Directly, by means of well-defined parameters

2. Indirectly, by means of non local and global variables
The indirect change of the value of a variable in one module by another module is called a side
effect. Readers should be very careful when using nonlocal and global variables, since errors
caused by side effects may be difficult to detect.

Preliminaries 2.25

SOLVED PROBLEMS

Mathematical Notations and Functions

2.1 Find (a) L7.5), L-7.5J, L-18]), Lv30), L¥30], Lz): and &) [7.51. [-7.5].
[-181, V301,307, x]

(a) By definition, Lx] denotes the greatest integer that does not exceed x, called the floor of
x. Hence,

175]=7 [-75]=-8 [-18]=-18
V30 =5 L¥30]=3 [n]=3

(b) By definition, [x] denotes the least integer that is not less than x, called the ceiling of x.
Hence,

75]|=8 [-751=-7 [-18] = -18
"'J301=6 LY30]=4 [r]=4
2.2 (a) Find 26 (mod 7), 34 (mod 8), 2345 (mod 6), 495 (mod 11).

(b) Find =26 (mod 7), 2345 (mod 6), =371 (mod 8), =39 (mod 3).
(¢) Using arithmetic modulo 15, evaluate 9+ 13, 7+ 11,4 -9, 2 - 10.

(a) Since k is positive, simply divide k& by the modulus M to obtain the remainder r. Then r
= k (mod M)
Thus
5=26(mod7) 2=34 (mod 8) 5 =2345 (mod 6) 0 =495 (mod 11)

(b) When k is negative, divide lk| by the modulus to obtain the remainder r’. Then k = —r’
(mod M). Hence k (mod M) = M — r” when r” # 0. Thus

~26(mod 7)=7-5=2 371 (mod 8)=8-3=35
-2345 (mod 6) =6 -5=1 -39 (mod 3) =0

(c) UscaxtM=a(mod M):
94+413=22=22-15=7 7+11=18=18-15=3
4 -9=-5=-5+15=10 2-10=-8=-8+15=7

2.3 List all the permutations of the numbers 1, 2, 3. 4.

Note first that there are 4! = 24 such permutations:

1234 1243 1324 1342 1423 1432
2134 2143 2314 2341 2413 2431
3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321

2.26 Data Structures with C

Observe that the first row contains the six permutations beginning with 1, the second row
those beginning with 2, and so on.

2.4 Find: (a) 27, 822, 25-%2; (b) log, 32, log,, 1000, log, (1/16); (c) Llog, 1000J, Llog, 0.01).

(@) 275 =1/25=1/32; 83 = (8)2 = 22 = 4; 2532 = 11252 = 1/5% = 1/125.

(b) log, 32 = 5 since 2° = 32; log,, 1000 = 3 since 10‘ = 1000; log,(1/16) = —4 since 2™ =
1/24 = 1/16.

(c) Llog,1000] = 9 since 2° = 512 but 2'° = 1024;

Llog, 0.01] = =7 since 277 = 1/128 < 0.01 < 2°¢ = 1/64.

2.5 Plot the graphs of the exponential function f(x) = 2%, the logarithmic function g(x) = log, x
and the linear function A(x) = x on the same coordinate axis. (a) Describe a geometric property
of the graphs f(x) and g(x). (b) For any positive number ¢, how are f(c), g(c) and h(c) related?

Figure 2.8 pictures the three functions.

fix) =

Fig. 2.8

(a) Since f(x) = 2* and g(x) = log, x are inverse functions, they are symmetric with respect
to the line y = x.
(b) For any positive number ¢, we have.

g(c) < hic) < f(c)

In fact, as ¢ increases in value, the vertical distances between the functions,

hic) - g(c) and f(c) - h(c),

increase in value. Moreover, the logarithmic function g(x) grows very slowly compared

with the linear function A(x), and the exponential function fix) grows very quickly
compared with h(x).

Preliminaries 2.27

Algorithms, Complexity

2.6

2.7

Consider Algorithm 2.3, which finds the location LOC and the value MAX of the largest

element in an array DATA with n elements. Consider the complexity function C(n), which

measures the number of times LOC and MAX are updated in Step 3. (The number of

comparisons is independent of the order of the elements in DATA.)

(a) Describe and find C(n) for the worst case.

(b) Describe and find C(n) for the best case.

(¢) Find C(n) for the average case when n = 3, assuming all arrangements of the elements
in"DATA are equally likely.

(a) The worst case occurs when the elements of DATA are in increasing order, where each
comparison of MAX with DATA[K] forces LOC and MAX to be updated. In this case,
Cn)=n-1.

(b) The best case occurs when the largest element appears first and so when the comparison
of MAX with DATA[K] never forces LOC and MAX to be updated. Accordingly, in this
case, C(n) = 0.

(¢) Let 1, 2 and 3 denote, respectively, the largest, second largest and smallest elements of
DATA. There are six possible ways the elements can appear in DATA, which correspond
to the 3! = 6 permutations of 1, 2, 3. For each permutation p, let n, denote the number of
times LOC and MAX are updated when the algorithm is executed with input p. The six
permutations p and the corresponding values n, follow:

Permutation p: 123 132 213 231 312 321
Value of n,: 0 0 I] I 2

Assuming all permutations p are equally hkely,

o 0+0+1+1+1+2 5
(J) = 6 =
(The evaluation of the average value of C(n) for arbitrary n lies beyond the scope of this
text. One purpose of this problem is to illustrate the difficulty that may occur in finding

the complexity of the average case of an algorithm.)

Suppose Module A requires M units of time to be executed, where M is a constant, Find the
complexity C(n) of each algorithm, where n 1s the size of the input data and b is a positive
integer greater than 1.

(a) Algorithm P2.7A:
1. Repeat for I = | to N:
2. Repeat forJ =1 to N:

a, Repeat for K = [to N:
4. Module A.

2.28 Data Structures with C

[End of Step 3 loop.|
[End of Step 2 loop.]
[End of Step 1 loop.]
5. Exit.

(b) Algorithm P2.7B:

1. SetJ:=1.
2. Repeat Steps 3 and 4 while] £ N:
3 Module A.
Set) ;=B XJ.
|End of Step 2 loop.|
5. Exit.

P A

Observe that the algorithms use N for n and B for b.)

(a) Here C(n) =)) X M
i=1j=1k=

The number of times M occurs in the sum is equal to the number of triplets (i, j, k),
where i, j, k are integers from 1 to n inclusive. There are n® such triplets. Hence

C(n) = M'n® = O(n’)
(b) Observe that the values of the loop index J are the powers of b:
1B, 0, 0, 0, ...
Therefore, Module A will be repeated exactly T times, where 7 is the first exponent such

that

bT > n
Hence, T =llog, n) + 1
Accordingly, C(n) = MT= O(log, n)

2.8 (a) Write a procedure FIND(DATA, N, LOCI, LOC2) which finds the location LOCI1 of
the largest element and the location LOC2 of the second largest element in an array
DATA with n > | elements.

(b) Why not let FIND also find the values of the largest and second largest elements?

(a) The elements of DATA are examined one by one. During the execution of the procedure,
FIRST and SECOND will denote, respectively, the values of the largest and second

largest elements that have already been examined. Each new element DATA[K] is
tested as follows. If

SECOND < FIRST < DATA[K]

then FIRST becomes the new SECOND element and DATA[K] becomes the new FIRST
element. On the other hand, if

SECOND < DATA[K] < FIRST

Preliminaries 2.29

then DATA[K] becomes the new SECOND element. Initially, set FIRST := DATA[1] and
SECOND := DATA|2], and check whether or not they are in the right order. A formal
presentation of the procedure follows:

Procedure P2.8: FIND(DATA. N, LOCI, LOC2)

1. Set FIRST := DATA[1], SECOND := DATA[2], LOCI1 =1,
LOC20= 2.
2. [Are FIRST and SECOND initially correct?]
If FIRST < SECOND, then:
(a) Interchange FIRST and SECOND,
(b) Set LOC1 =2 and LOC2 := 1.

|End of If structure.]
3. Repeat for K = 3 to N:
If FIRST < DATA|K]|, then:
(a) Set SECOND := FIRST and FIRST := DATAI[K].
(b) Set LOC2 := LOCI1 and LOCI1 = K.
Else if SECOND < DATAIK], then:
Set SECOND := DATAIK] and LOC2 := K.
|End of If structure.]|
|End of loop.]
4. Return.

(b) Using additional parameters FIRST and SECOND would be redundant, since LOCI1 and
LOC2 automatically tell the calling program that DATA[LOCI1] and DATA[LOC2] are,
respectively, the values of the largest and second largest elements of DATA.

Program 2.8

/* C i1mplementation of Procedure P 2.8 */
#include <stdio.h>
#include <conio.h>

int DATA[10]={(22,65,1,99,32,17,74,49,33,2};
int N, LOCl, LOC2, FIRST, SECOND;

vold main()

{
void FIND(int [],int,aint,int):

glrsexr():
N=10;
LOCl=-1;
LOC2=-1:;

FIND(DATA,N,LOC1,LOC2) ;

2.30 Data Structures with C

printf (*FIRST = %d, LOC1l = %d, SECOND = %d, LOC2 = %d'.FIRST,LOC1,SEQQHD;
LOC2);

getch();
}

void FIND(int LIST(],int LEN,int Ll,int L2)
{

int TEMP,K;

FIRST=LIST[O0];

SECOND=LISTI(1];

Ll1=0;

L2=1;

1f(FIRST<SECOND)
{
TEMP=FIRST;
FIRST=SECOND;
SECOND=TEMP;
L2=0;
Ll=1;
}
for (K=2; K<LEN;K++)
{
if (FIRST<LISTI[K])
{
SECOND=FIRST;
FIRST=LIST([K];
L2=L1;
L1=K;
}
else if (SECOND<LIST[K])
{
SECOND=LIST[K];
L2=K;
}
}
LOCl=L1;
LOC2=L2;
}

Output:

FIRST = 99, LOC1 3, SECOND 74, LOC2 = 6

Preliminaries 2.31

2.9 An integer n > 1 is called a prime number if its only positive divisors are | and n;
otherwise, n 1s called a composite number. For example, the following are the prime
numbers less than 20:

253, 3.1y 11,43, 17:.18

If n > | is not prime, i.e., if n is composite, then » must have a divisor
k # 1 such that k < \/; or, in other words, k* < n.

Suppose we want to find all the prime numbers less than a given number m, such as 30.
This can be done by the “sieve method,” which consists of the following steps. First list the
30 numbers:

L&y, 8,000 1, 8,9, 10, 11,12, 13, 14, 13
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

Cross out 1 and the multiples of 2 from the list as follows:

Y. 2,3, 45 617,89 0,11, 12, 13, 4, 15
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

Since 3 is the first number following 2 that has not been eliminated, cross out the multiples
of 3 from the list as follows:

Y. 2,3, 45 6.7. %9 10,11, 12. 13, 14, 18
16, 17, 18,19, 20, 24, 22, 23, 24, 25, 26, /7, 28. 29, 30

Since 5 is the first number following 3 that has not been eliminated, cross out the multiples
of 5 from the list as follows:

Y.2,3,45 6, 7,89 0,11, JZ 13, 4, J5
16, 17, 18, 19, 20, 24, 22, 23, 24, 25, 26, V1, 28. 29, 30

Now 7 is the first number following 5 that has not been eliminated, but 72 > 30. This means
the algorithm is finished and the numbers left in the list are the primes less than 30:

i 3y 4y By 13, Vi, 19,23, 29

Translate the sieve method into an algorithm to find all prime numbers less than a given
number n.

First define an array A such that
Alll=1, A[2]=2, A[3]=3, A[4]=4,AIN-1]=N-=-1, A[N]=N

We cross out an integer L from the list by assigning A[L] = 1. The following procedure
CROSSOUT tests whether A[K] = 1, and if not, it sets

A[l2ZK] =1, A[3K] =1, A[4K]=1, ...

That is, it eliminates the multiples of K from the list

2.32 Data Structures with C

Procedure P2.9A: CROSSOUT(A, N, K)
1. If A[K] = I, then: Return.
2. Repeat for L = 2K to N by K.
Set A|L]:= 1.
[End of loop.]
3. Return.

The sieve method can now be simply written:

Algorithm P2.9B: This algorithm prints the prime numbers less than N.

1. [Initialize array A.] Repeat for K =1 to N:
Set A|K] := K.
2. [Eliminate multiples of K.| Repeat for K = 2 to m .
Call CROSSOUT(A, N, K).
3. [Print the primes.] Repeat for K = 2 to N:
If A[K] # 1, then: Write: A[K].
4. Exit.

#include <stdio.h>
#include <conio.h>
#include <math.h>

int A[100];
void CROSSQUT (int,int);

void main(}

{
int K.N:
clrscri):

printf (“Enter the wvalue of N: ");
scanf (“%d”, &N) ;

Al[O]=-1:
for(K=1;K<=N;K++)
AlK]=K;

for(K=2;K<=sgrt (N} ;K++)
CROSSOUT (N, K) ;

for(K=2;K<=N;K++)
if(A[K]!=1}

Preliminaries 2.33

printf(*“sd ~,A[K]):;
getch():;

)

void CROSSOUT(int n.,int k)

{

int L:

if(Alk]l==1)

return;

for(L=2*k;: L<=n;L=L+k)
A[L]=1;

return;

}

Output:
Enter the wvalue of N: 20
" M e Sy e B S 5 O B A &

2.10 Suppose P(n) = a, + a\n + a,n° + -+~ + a,n™; that is, suppose degree P(n) = m. Prove that

2.11

P(n) = O(n™).
Let b, = layl, by, = la,l, ..., b,, = la,|. Then, forn 2 1,
P(n) < by + byn + byn* + -+ + b, n"

(bo b

e "

S(by+ by + -+ + b,)n" = Mn"
where M = layl + la,l + -+ + la,|. Hence P(n) = O(n™).
For example, 5x* + 3x = O(x") and x° = 4 000 000x% = O(xX°).

Suppose that 7(n) and T,(n) are the time complexities of two program fragments P, and
P, where T,(n) = O(fin)) and T5(n) = O(g(n)), what is the time complexity of program
fragment P, followed by P,?

The time complexity of program fragment P, followed by P, is given by T,(n) + T»(n). To
obtain T,(n) + T,(n), we have

T\(n) < c¢-fin) for some positive number ¢ and positive integer n,, such that n 2 n, and
T,(n) < d- g(n) for some positive number d and positive integer n,, such that n 2 n,

Let n, = max(n,, n,). Then,

T\(n) + T5(n) <c - fin) + d - g(n), for n > n,
(1.e.) T\(n) + T5(n) < (¢ + d) max(fin), g(n)) for n > n,

Hence T,(n) + T5(n) = O(max(f(n), g(n))). (This result is referred to as Rule of Sums of O
notation)

2.34

2.12

Data-Structures with C

Given: T,(n) = O(fin)) and T5(n) = O(g(n)). Find T,(n)- T5(n). :

T,(n) < c-fin) for some positive number ¢ and positive integer n;, such that n 2 n, and |

T5(n) < d- g(n) for some pusuwc number 4 and positive mleger n, such that n = n,. |

Hence, T)(n)-T5(n) < c-fin)-d-gn) |
< k-fin)- g(n) -

Therefore T,(n)-T5(n) = O(f(n)-g(n)) (This result is referred to as Rule of Products of O
notation) | <

Variables, Data Types |

2.13

2.14

2.15

2.16

Describe briefly the difference between local variables, parameters and global variables.

Local variables are variables which can be accessed only within a particular program or
subprogram. Parameters are variables which are used to transfer data between a subprogram
and its calling program. Global variables are variables which can be accessed by all of the
program modules in a computer program. Each programming language which allows global
variables has its own syntax for declaring them.

Suppose NUM denotes the number of records in a file. Describe the advantages in defining
NUM to be a global variable. Describe the disadvantages in using global variables in general.

Many of the procedures will process all the records in the file using some type of loop.
Since NUM will be the same for all these procedures, it would be advantageous to have
NUM declared a global variable. Generally speaking, global and nonlocal vanables may
lead to errors caused by side effects, which may be difficult to detect.

Suppose a 32 bit memory location AAA contains the following sequence of bits:
0100 1101 1100 0001 1110 1001 0101 1101
Determine the data stored in AAA.

There 1s no way of knowing the data stored in AAA unless one knows the data type of
AAA. If AAA is a character variable and the EBCDIC code is used for storing data, then
(AZ) 1s stored in AAA. If AAA 1s an integer variable, then the integer with the above
binary representation is stored im AAA.

Mathematically speaking, integers may also be viewed as real numbers. Give some reasons
for having two different data types.

The arithmetic for integers, which are stored using some type of binary representation, is
much simpler than the arithmetic for real numbers, which are stored using some type of
exponential form. Also, certain round-off errors occurring in real arithmetic do not occur in
integer arithmetic. -

Preliminaries 2.35

SUPPLEMENTARY PROBLEMS

Mathematical Notations and Functions

2.1
2.2

2.3
24

Find (a) |3.4), 1-3.4), 1-7), LV75), LY75), Le); () [3.47, [-3.47, [=71, T¥751, [Y751, Tl

(a) Find 48 (mod 5), 48 (mod 7), 1397 (mod 11), 2468 (mod 9).
(b) Find 48 (mod 5), =152 (mod 7), =358 (mod 11), =1326 (mod 13).
(c) Using arithmetic modulo 13, evaluate

0% 10, 8412 344, 3-4 2<7 S§-8
Find (a) 13 + 81, 13 — 81, -3 + 8I, | — 3 — 8I; (b) 7!, 8!, 14Y/12!, 15!/16!
Find (a) 374, 472, 27-23; (b) log,64, log,, 0.001, log, (1/8); (¢) Lig 1 000 000J, L1g 0.0011.

Algorithms, Complexity

2.5

2.6

2.7

2.8

Consider the complexity function C(n) which measures the number of times LOC is updated in
Step 3 of Algorithm 2.3. Find C(n) for the average case when n = 4, assuming all arrangements
of the given four elements are equally likely. (Compare with Solved Problem 2.6.)

Consider Procedure P2.8, which finds the location LOC] of the largest element and the

location LOC2 of the second largest element in an array DATA with n > | elements. Let

C(n) denote the number of comparisons during the execution of the procedure.

(a) Find C(n) for the best case.

(b) Find C(n) for the worst case.

(c) Find C(n) for the average case for n = 4, assuming all arrangements of the given
elements in DATA are equally likely.

Repeat Supplementary Problem 2.6, except now let C(n) denote the number of times the
values of FIRST and SECOND (or LOC1 and LOC2) must be updated.

Suppose the running time of a Module A is a constant M. Find the order of magnitude of the
complexity function C(n) which measures the execution time of each of the following
algorithms, where n is the size of the input data (denoted by N in the algorithms).

(a) Procedure P2.8A:
I. Repeat for I = 1 to N:

2. RepeatforJ=1tol:
3. Repeat for K = | to J:
4 Module A.

[End of Step 3 loop.]
|End of Step 2 loop.]
[End of Step | loop.]
Exit.

N

236

2.9.

Data Structures with C

(b) Procedure P2.8B:

1. SetJ:=N. -
2. Repeat Steps 3 and 4 while J > 1.
. Module A.
4 SetJ = J1/2.
|[End of Step 2 loop.]
5. Return.

Find the order of complexity of the following program.
fun(n)
{if(n<=2)return (1); else
return ((fun(n-1)*fun(n-2));}

PROGRAMMING PROBLEMS

2.1

2.2

2.3

24

2.5

2.6

Write a function subprogram DIV(J, K), where J and K are positive integers such that
DIV(J, K) = 1 if J divides K but otherwise DIV(J, K) = 0. (For example, DIV(3, 15) = 1 but
DIV(3, 16) = 0.)

Write a program using DIV(J, K) which reads a positive integer N > 10 and determines whether
or not N is a prime number. (Hint: N is prime if (i) DIV(2, N) = 0 (1.e., N is odd) and
(ii) DIV(K, N) = 0 for all odd integers K where 1 < K* <N.)

Translate Procedure P2.8 into a C program; i.e., write a program which finds the location
LOC1 of the largest element and the location LOC2 of the second largest element in an
array DATA with N > 1 elements. Test the program using 70, 30, 25, 80, 60, 50, 30, 75, 25,
and 60,

Translate the sieve method for finding prime numbers, described in Solved Problem 2.9, into
a C program to find the prime numbers less than N. Test the program using (a) N = 1000 and
(b) N = 10 000.

Let C denote the number of times LOC is updated using Algorithm 2.3 to find the largest element
in an array A with N elements.
(a) Write a subprogram COUNT(A, N, C) which finds C.
(b) Write a Procedure P2.27 which (i) reads N random numbers between 0 and 1 into an array
A and (i1) uses COUNT(A, N, C) to find the value of C.
(c) Write a program which repeats Procedure P2.27 1000 times and finds the average of the
1000 C’s.
(i) Test the program for N = 3 and compare the result with the value obtained in
Solved Problem 2.6.
(11) Test the program for N = 4 and compare the result with the value in Supplementary
Problem 2.5.

Write a pseudocode for an algorithm that receives an integer, prints the number of digits and
the sum of digits in the integer.

MULTIPLE CHOICE QUESTIONS

Preliminaries 2.37

2.1 of a set of n elements is an arrange- What 1s this structure?
ment of the elements in a given order. (a) Multiple Alternative
(a) Combination (b) Permutation {(b) Double Alternative
(¢) Exponent (d) Logarithm (c) Single Alternative
2.2 There are permutations of a set (d) None of the above
of n elements. 2.9 loop uses a condition to control
(a) n! (b) n " the loop.
(¢) n2 (d) n+l " (a) Repeat-for (b) Repeat
2.3 Logarithms to the base 10 are called (¢c) Continue (d) Repeat-while
logarithms. 2.10 In complexity theory, case refers
(a) Natural (b) Simple to the expected value of fin).
(c) Common (d) Binary (a) Average (b) Best
2.4 The first part of an algorithm tells the (¢c) Worst (d) Good

of the algorithm. 2.11 O(n*) is the complexity of which
(a) Logic (b) Process searching and sorting algorithm?
(¢) Purpose (d) Steps (a) Binary search (b) Linear search

2.5 Each step of an algorithm may contain (¢c) Merge sort (d) Bubble sort
Its in brackets. 2.12 The notation 1s used when the
(a) Purpose {b) Functions function g(n) defines a lower bound tor
(¢} Steps (d) Comments the function fin).

2.6 The term will be used for an (a) Omega (b) Big O
independent algorithmic module which (¢) Theta (d) Little Oh
solves a particular problem. 2.13 Each program module contains its own
(a) Program (b) Logic list of variables called
(¢) Procedure (d) Name (a) Global (b) Local

¢ Sy logic employs a number of (¢) Search (d) Binary
conditions which lead to a selection of 2.14 function of C is used to allocate
one out of several alternative modules. a block of memory.

(a) Selection (b) Sequential (a) malloc{) (b) calloc()
(¢) Iteration {(d) Procedural (c) free (d) realloc()
2.8 A structure is of the form: 2.15 Varniables that can be accessed by some
It condition, then: program modules are called
[Module A] variables.
Else: (a) Global (b) Local
[Module B] (¢) Search (d) Nonlocal

[End of if structures]

ANSWERS TO MULTIPLE CHOICE QUESTIONS

2.7 (a)
2.14 (a)

25
2.12

(d)
(a)

2.6 (¢)
2.13 (b)

2.3 (¢)
2.10 (a)

24 (b)
2.11 (d)

2.1 (b)
2.8 (b)
2.15 (d)

2.2 (a)
2.9 ()

String Processing

3.1 INTRODUCTION

Historically, computers were first used for processing numerical data. Today, computers are fre-
quently used for processing nonnumerical data, called character data. This chapter discusses how
such data are stored and processed by the computer.

One of the primary applications of computers today is in the field of word processing. Such
processing usually involves some type ol pattern matching, as in checking to see i a particular
word S appears in a given text T. We discuss this pattern matching problem n detail and, more-
over, present two different pattern matching algorithms. The complexity of these algorithms s also
imvestigated.

Computer terminology usually uses the term “string” for a sequence of characters vather thun
the term “word,” since “word” has another meaning in computer science. For this reason, many
texts sometimes use the expression “string processing,” “string mampulation™ or “text editing”
instead of the expression “word processing.”

The material i this chapter 1s essentially tangential and independent of the rest. ol the texi
Accordingly, the reader or instructor may choose to omit this chapter on a Hirst reading or cover
this chapter at a later ume.

3.2 BASIC TERMINOLOGY

Each programming language contains a character set that is used to communicate with the com-
puter. This set usually includes the following:

Alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Digits: 0123456789
Special characters: + -/ * (), . $="0

3.2 Data Structures with C

The set of special characters, which includes the blank space, frequently denoted by L, varies
somewhat from one language to another.

A finite sequence S of zero or more characters is called a string. The number of characters in a
string 1s called its length. The string with zero characters is called the empty string or the null
string. Specific strings will be denoted by enclosing their characters in single quotation marks.
The quotation marks will also serve as string delimiters. Hence

THE END' "TO BE OR NOT TO BE' 'ac

are strings with lengths 7, I8, 0 and 2, respectively. We emphasize that the blank space is a
character and hence contributes to the length of the string. Sometimes the quotation marks may be
omitted when the context indicates that the expression 1s a string.

Let S, and S, be strings. The string consisting of the characters of S; followed by the
characters of S, 1s called the concatenation of S, and S,; it will be denoted by S,/S,. For
example,

‘THE' // 'TEND' = "THEEND' but "THE' // ' O ' // " END = 'THE END'

Clearly the length of S,//S, 1s equal to the sum of the lengths of the strings S, and S..
A string Y is called a substring of a string S if there exist strings X and Z such that

S = XIIYIZ

It X i1s an empty string, then Y 1s called an initial substring of S, and if Z is an empty string then
Y is called a terminal substring of S. For example,

'BE OR NOT 1s a substring of "TO BE OR NOT TO BE'
'THE' is an imtal substring of ‘THE END'

Clearly, 1t Y 1s a substring of S, then the length of Y cannot exceed the length of S.

Remark: Characters are stored in the computer using either a 6-bit, a 7-bit or an 8-bit code. The
unit equal to the number of bits needed to represent a character is called a byre. However, unless
otherwise stated or implied, a byte usually means 8 bits. A computer which can access an indi-
vidual byte is called a byte-addressable machine.

3.3 STORING STRINGS

Generally speaking, strings are stored in three types of structures: (1) fixed-length structures,
(2) variable-length structures with fixed maximums and (3) linked structures. We discuss each
type of structure separately, giving its advantages and disadvantages.

Record-Oriented, Fixed-Length Storage

In fixed-length storage each line of print is viewed as a record, where all records have the same
length, i.e., where each record accommodates the same number of characters. Since earlier systems
used to input on terminals with 80-column images or using 80-column cards, we will assume our
records have length 80 unless otherwise stated or implied.

String Processing 3.3

Example 3.1

Suppose the input consists of the program in Fig. 3.1. Using a record-oriented, fixed-length
storage medium, the input data will appear in memory as pictured in Fig. 3.2, where we assume
that 200 is the address of the first character of the program.

The main advantages of the above way of storing strings are:

1. The ease of accessing data from any given record
2. The ease of updating data in any given record (as long as the length of the new data does
not exceed the record length)

/*PROGRAM PRINTING TWO INTEGERS IN DECREASING ORDER*/
void main ()
3Nt T K
scanf (“"%d %4, &J,&K);
1f (J>K)
printf(*%d %d\n”,J,K);
1f (J<K)
printf(*%d %d\n”,K,J);
)

Fig. 3.1 Input Data

200 210

| \ *v‘a i |d mjial|i [n|(])
t t
280 290

t t
440 450
EEEE) |
t t
8B40 850

Fig. 3.2 Records Stored Sequentially in the Computer

3.4 Data Structures with C

The main disadvantages are:

1. Time is wasted reading an entire record if most of the storage consists of inessential blank
spaces.

2. Certain records may require more space than available.

3. When the correction consists of more or fewer characters than the original text, changing a
misspelled word requires the entire record to be changed.

Remark: Suppose we wanted to insert a new record in Example 3.1. This would require that all
succeeding records be moved to new memory locations. However, this disadvantage can be casily
remedied as indicated in Fig. 3.3. That is, one can use a linear array POINT which gives the
address of each successive record, so that the records need not be stored in consecutive locations
in memory. Accordingly, inserting a new record will require only an updating of the array POINT.

[T T T/T*TPIR[C[GIR[AIM] TPIR[t[N]T](]N[G] [T[W[O]

POINT
1
2 [— ([T TT T Vel el T T
4j_s

=11 ([iln[t] i]'xI: HER
9| Sy > [] [|s|c|a]n] {"Id%[d|'|-&||

— [T T DI T

Fig. 3.3 Records Stored Using Pointers

Variable-Length Storage with Fixed Maximum

Although strings may be stored in fixed-length memory locations as above, there are advantages in
knowing the actual length of each string. For example, one then does not have to read the entire
record when the string occupies only the beginning part of the memory location. Also, certain
string operations (discussed in Sec. 3.4) depend on having such variable-length strings.

The storage of variable-length strings in memory cells with fixed lengths can be done in two
general ways:

I. One can use a marker, such as two dollar signs ($$). to signal the end of the string.
2. One can list the length of the string—as an additional item in the pointer array, for example.

String Processing 35

Using the data in Fig. 3.1, the first method is pictured in Fig. 3.4(a) and the second method is
pictured in Fig. 3.4(b).

| *PROGRAM PRINTING TWO INTEGERS IN DECREASING ORDERSS
1 | void main())
2 _
intJ, K$S;
3 K
4| o
i S— scanf("%d%d", & J, &K$35);
g| e
(a) Records with sentinels.
/*PROGRAM PRINTING TWO INTEGERS IN DECREASING ORDER |

POINT
1155 ~—[" void main() |
2(18| =
3|21 e— - {intJ, K; I
4124 ._L..

. scanf("%d%", & J, & K);

99. ‘“—L }

(b} Record whose lengths are listad.

Fig. 3.4

Remark: One might be tempted to store strings one after another by using some separation marker,
such as the two dollar signs ($%) in Fig. 3.5(a), or by using a pointer array giving the location of
the strings, as in Fig. 3.5(b). These ways of storing strings will obviously save space and are

| /*PROGRAM PRINTING. .. ORDERS$$ void main() | {intJ, K$$;
(a)

END
1§ & \ L/*PROGRAM PRINTING. . . ORDER | void main() | {intJ.K; | ...
C I ;i 3 J

3 8

- L

.]

. @

(b)

Fig. 3.5 Records Stored One after Another

3.6 Data Structures with C

sometimes used in secondary memory when records are relatively permanent and require little
change. However, such methods of storage are usually inefficient when the strings and their
lengths are frequently being changed.

Linked Storage

Computers are being used very frequently today for word processing, i.e., for inputting, processing
and outputting printed matter. Therefore, the computer must be able to correct and modify the
printed matter, which usually means deleting, changing and inserting words, phrases, sentences
and even paragraphs in the text. However, the fixed-length memory cells discussed above do not
easily lend themselves to these operations. Accordingly, for most extensive word processing appli-
cations, strings are stored by means of linked lists. Such linked lists, and the way data are inserted
and deleted in them, are discussed in detail in Chapter 5. Here we simply look at the way strings
appear in these data structures.

By a (one-way) linked list, we mean a linearly ordered sequence of memory cells, called nodes,
where each node contains an item, called a /ink, which points to the next node in the list (i.e., which
contains the address of the next node). Figure 3.6 is a schematic diagram of such a linked list.

XXX "-—’-IK}(K o —1 NUX I'-Ahlxxx > XYY | > o0

Fig. 3.6 Linked List

Strings may be stored in linked lists as follows. Each memory cell is assigned one character or a
fixed number of characters, and a link contained in the cell gives the address of the cell containing
the next character or group of characters in the string. For example, consider this famous quotation:

To be or not to be, that is the question.

Figure 3.7(a) shows how the string would appear in memory with one character per node, and
Fig. 3.7(b) shows how it would appear with four characters per node.

ECRCC R EC RO CE REC R CC RO R N e

(a) One character per nodes.

T|ol |B[e+—E] [O|R]e}—[N[O[T] Je}—=>[T]O] [BIe}—{E].] [T]e}—> s

(b) Four characters per node.

Fig. 3.7

3.4 CHARACTER DATA TYPE

This section gives an overview of the way various programming languages handle the character

data type. As noted in the preceding chapter (in Sec. 2.7), each data type has its own formula for
decoding a sequence of bits in memory.

String Processing 3.7

Constants

Many programming languages denote string constants by placing the string in either single or
double quotation marks. For example,

THE END' and 'TO BE OR NOT TO BE'

are string constants of lengths 7 and 18 characters respectively. Our algorithms will also define
character constants in this way.

Variables

Each programming language has its own rules for forming character variables. However, such
variables fall into one of three categories: static, semistatic and dynamic. By a sratic character
variable, we mean a variable whose length is defined before the program is executed and cannot
change throughout the program. By a semistatic character variable, we mean a variable whose
‘ength may vary during the execution of the program as long as the length does not exceed a
maximum value determined by the program before the program is executed. By a dynamic character
variable, we mean a variable whose length can change during the execution of the program. These
three categories correspond, respectively, to the ways the strings are stored in the memory of the
computer as discussed in the preceding section.

Example 3.2

In C, vanables are declared using alphanumeric characters. The only special character that is
allowed inside a variable name is an underscore (_). Further, a variable name must comply with
certain rules; for instance: '

e A variable name must always begin with a letter

e A variable name can not be same as a system keyword

e No white spaces are allowed inside a variable name

Following are some examples of character variable declaration in C:

char a; //declares a single character wvariable a
char str[20]; //declares a character array (string) of length 20

3.5 STRINGS AS ADT

Most languages have strings as a built-in data type or a standard library, and a set of operations
defined on that type. Therefore, there is actually no need for us to create our own string ADT.

However, we can implement our own string data type, if required. The use of a data type in
siring processing applications should not depend on how it is implemented, or whether it is built-
in or user defined. We only need to know what operations are allowed on the string.

A string data type typically should have operations to:

Return the n™ character in a string.
Set the n™ character in a string to c.
Find the length of a string.
Concatenate two strings.

Copy a string.

3.8 Data Structures with C

e Delete part of a string.
e Modify and compare strings in other ways.
The following is a set of operations we might want to do on strings.

GETCHAR(str, n) Returns the n™ character in the string

PUTCHAR(str, n, c) Sets the n™ character in the string to ¢

LENGTH(str) Returns the number of characters in the string

POS(strl, str2) Returns the position of the first occurrence of s1-2 found in strl, or 0 if no match
CONCAT(strl, str2) Returns a new string consisting of characters in strl followed by characters in str2
SUBSTRING(strl, i, m) Returns a substring of length m starting at position i/ in string str

DELETE(str, i, m) Deletes m characters from str starting at position i

INSERT(strl, str2, i) Changes strl into a new string with s1r2 inserted in position i

COMPARE(strl, str2) Returns an integer indicating whether strl > sr2

Let S1 be a string. There are a number of ways in which this string can be implemented as shown
in Example 3.3.

Example 3.3

Suppose S1 = ‘JANICE'.
(a) In this case, as the length is known, it can be implemented as a fixed length array, where
the first element denotes the length of the string as shown below.

(6, J, A, N, I, C, E]

(b) If the length is not known, it can be implemented as an array but with the end of the string
indicated using a special ‘NULL" character denoted by “\0’ as shown below. Memory can then
be dynamically allocated for the string once we know its length.

[9:R NEE G B N heeae]

The first implementation has the disadvantages of all fixed length array implementations. However,
some operations are efficient, for instance, finding the length.

The second implementation has the advantages of dynamic allocation of space; modifying the
string also may be more efficient, as we need not recalculate size.

3.6 STRING OPERATIONS

Although a string may be viewed simply as a sequence or linear array of characters, there is a
fundamental difference in use between strings and other types of arrays. Specifically, groups of
consecutive elements in a string (such as words, phrases and sentences), called substrings, may be
units unto themselves. Furthermore, the basic units of access in a string are usually these substrings,
not individual characters.

Consider, for example, the string

‘TO BE OR NOT TO BE'

We may view the string as the 18-character sequence T, O, 0, B, ..., E. However, the substrings
TO, BE, OR, ... have their own meaning.
On the other hand, consider an 18-element linear array of 18 integers,

String Processing 3.9

a0, 10,995,813, 8,5, 11,9, 9,13, 7. 10, 6, 11

The basic unit of access in such an array is usually an individual element. Groups of consecutive
elements normally do not have any special meaning.

For the above reason, various string operations have been developed which are not normally
used with other kinds of arrays. This section discusses these string-oriented operations. The next
section shows how these operations are used in word processing. (Unless otherwise stated or
implied, we assume our character-type variables are dynamic and have a variable length determined
by the context in which the variable 1s used.)

Substring

Accessing a substring from a given string requires three pieces of information: (1) the name of the
string or the string itself, (2) the position of the first character of the substring in the given string
and (3) the length of the substring or the position of the last character of the substring. We call this
operation SUBSTRING. Specifically, we write

SUBSTRING(string, initial, length)
to denote the substring of a string S beginning in a position K and having a length L.

Example 3.4
(a) Using the above function we have:
SUBSTRING('TO BE OR NOT TO BE', 4, 7) = 'BE OR N'
SUBSTRING('THE END' , 4, 4) = '[JEND'
Program 3.1

/* Code showing the implementation of SUBSTRING function in C */
#include <stdio.h>
#include <conio.h>

volid main()

{

char S[80]1={"TO BE OR NOT TO BE”")};
char *SUBSTR(char*,int,int);
clrscri():

printf (*STRING = %s8”,3);

printf (*\n\nSUBSTRING(S,4,7 = %s",SUBSTR(S,4,7));
getch();

}

char *SUBSTR(char *STR,int 1i,int 7j)
'

int k. m=0;

__char STRRES(80]; Yo L
15f.for(k-i -1; kc—i+j-1-1;k++)"gi_f‘kf-z
> { .)

_STRRES [m)=STR([k];

. } Fr :T.?__;. ' | -. 1 .u',_:_._{:; %: : |
- smRRESImI=NO'; o
returﬁ S‘I'!-‘tRES). % 7 B %

& 3

Gnl:wt:
smnsnmnzonm‘rmnnl

.-'

SUBSTRIHG{S.*I 7) = BE OR H

Indexing

Indexing, also called pattern matching, refers to finding the position where a string pattern P first
appears in a given string text T. We call this operation INDEX and write

INDEX (text, pattern)

If the pattern P does not appear in the text T, then INDEX is assigned the value 0. The arguments
“text” and “pattern” can be either string constants or string variables.

(a)&lppme'l'containstﬁetext A - e
P | o mﬂm 15 mz mrsssuw

- INOBK(T, THE). INDOXT, THEN) and TNDDXT, ‘TTHEED)
hm the values 7, 0 and 14, respectively. _ St :iﬂ

“ |‘ ‘_ 1
- " Jlf f ==

!* Code showing the implementation of INDEX function in C */ L“"w

#include <stdio.h> | TR f:
~ #include <conio.h> | | g - |
‘#include <string.h> _ | ' s -
- void ‘main() “"

r.-.hn: T(80]=(“HIS FATHER IS THE Pnomsson'}. T oy |
'int INDEX(char*,char*); ~ | | %
1‘ﬂ1rﬂ¢r{1. %% oD '

String Processing 3.11

o printf(*T = %s",T);

. printf(“\n\nINDEX(T, 'THE’) = %d*,INDEX(T,“THE?));
 printf(*\n\nINDEX(T, 'THEN') = $%d”,INDEX(T,“THEN"));

- printf(“\n\nINDEX(T,’' THE ‘') = %d*,INDEX(T,* THE *));
- getch{);

_}
'-int INDEX (char *STR1l,char *STR2)
ik |

~int m,n;

‘int index, flag;

for(m=0;m<strlen(STR1) ;m++)
{
index=m;
flag=1l;
for({n=0;n<strlen(STR2) ;n++)
{ :
if (STR1[m+n]==STR2[n])

r

else
{

-

. gl 1 T
L

flag=0;
break;

}
}
1if(flag==0)
continue;
else _
return(index);
}
“if(m==strlen(STR1))
return(-1);

By

~ Output:
T = HIS FATHER IS THE PROFESSOR

. INDEX(T,’'THE') = 6
INDEX (T, ‘THEN’) = -1
f"z-IHDEKtT,' THE *)%= 113

Remark: Since 0 is a valid index location in C, we have used -1 to denote instances where pattern
does not match the text.

3.12 Data Structures with C

Concatenation

Let S; and S, be strings. Recall (Sec. 3.2) that the concatenation of S| and S5, which we denote by
S//S,, 18 the string consisting of the characters of S, followed by the characters of S,.

Example 3.6 _
(a) Suppose S; = 'MARK' and S, = TWAIN'. Then:
5//5; = 'MARKTWAIN' but S,// '00°//S, = 'MARK TWAIN’
(b) Concatenation is performed in C language using the strcat function, as shown below:
gtrcat(S1l,S2); //Concatenates strings 351 and S2 and stores

the result in Sl
strcat () function is part of the string.h header file; hence it must be included at the time of

pre-processing.

/* Code showing string concatenation in C */
#include <stdio.h>

#include <conio.h>
#include <string.h>

void main{)

{

char S1[8B0]={"MARK")};
char S2[80]={"TWAIN"};
clrscr():

printf(*Sl = %s8”,S81);

printf(*\nS2 = %s¥,82);

printf(*\nS1//82 = %s”,strcat(81,82));
strcepy (S1, "MARK") ;

printf(*\nS1//*' ‘'//52 = %s8”",strcat(strcat(sl," *),S2));:

getch();
}

Qutput:

S1 = MARK

S2 = TWAIN

S1//82 = MARKTWAIN

Sl//"' ‘//52 = MARK TWAIN

Length
The number of characters in a string is called its length. We will write

String Processing 3.13

LENGTH(string)

for the length of a given string.

xa ,: .-.;;-f'-‘f.ﬂ,i*_ 2 ': - fi‘ifff- 5 .
(a) Suppose S = 'COMPUTER'. Then:
LENGTH (S) = 8
Similarly,
LENGTH ('MARC TWAIN') = 10
(b) String length is determined in C language using the strlen function, as shown below:

X = strlen(“Sunrise”); //strlen function returns an integer value
7 and assigns it to the variable X

Similar to strcat, strlen is also a part of string.h, hence the header file must be included at the time
of pre-processing.

Program 3.4

/* Code showing the use of strlen () in C */
#include <stdio.h>

#include <conio.h>

#include <string.h>

volid main()

{
char S1[(80]={"COMPUTER”*)};

char S2[80]={"MARC"};
clrscr!():

printf (“*Length(%s) = %d4”",Sl,strlen(Sl));
printf ("\nLength(%s) = %d",S2,strlen(S2));

getch();
)

Output:
Length (COMPUTER) = 8
Length (MARC) = 4

3.7 WORD/TEXT PROCESSING

In earlier times, character data processed by the computer consisted mainly of data items, such as
names and addresses. Today the computer also processes printed matter, such as letters, articles
and reports. It is in this latter context that we use the term “word processing.”

3.14 Data Structures with C

Given some printed text, the operations usually associated with word processing are the following:

(a) Replacement. Replacing one string in the text by another,

(b) Insertion. Inserting a string in the middle of the text.

(¢) Deletion. Deleting a string from the text.
The above operations can be executed by using the string operations discussed in the preceding
section. This we show below when we discuss each operation separately, Many of these operations
are built into or can easily be defined in most of the programming languages.

Insertion

Suppose in a given text T we want to insert a string S so that S begins in position K. We denote
this operation by

INSERT(text, position, string)
For example,

INSERT (ABCDEFG’, 3, 'XYZ') = '"ABXYZCDEFG'
INSERT (CABCDEFG', 6, 'XYZ') = ' ABCDEXYZFG'

This INSERT function can be implemented by using the string operation defined in the previous
section as follows:

INSERT(T, K, S) = SUBSTRING(T, 1, K - 1) #/8// SUBSTRING(T, K, LENGTH(T) - K + 1)

That is, the initial substring of T before the position K, which has length K - 1, is concatenated
with the string 5, and the result 15 concatenated with the remaining part of T, which begins in
position K and has length LENGTH(T) - (K - 1) = Length (T) - K + 1. (We are assuming
implicitly that T is a dyamic variable and that the size of T will not become too large.)

Deletion

Suppose in a given text T we want to delete the substring which begins at position K and has
length L. We denote this operation by

DELETE(text, position, length)
For example,

DELETE(' ABCDEFG ', 4, 2) ="' ABCFG'
DELETE(" ABCDEFG ', 2,4) =" AFG "’

We assume that nothing is deleted if position K = 0. Thus
DELETE(" ABCDEFG ', 0, 2) =" ABCDEFG '

The importance of this “zero case” 1s seen later.

The DELETE function can be implemented using the string operations given in the preceding
section as follows:

DELETE(T, K, L) =
SUBSTRING(T, 1, K - 1)//SUBSTRING(T, K + L, LENGTH(T) - K - L + 1)

That is, the initial substring of T before position K is concatenated with the terminal substring of T
beginning at position K + L. The length of the initial substring is K — 1, and the length of the
terminal substring 1s:

String Processing 3.15

LENGTH(T) - (K +L-1)=LENGTH(T)-K -L + 1

We also assume that DELETE(T, K, L) = T when K = 0.
Now suppose text T and pattern P are given and we want to delete from T the first occurrence

of the pattern P. This can be accomplished by using the above DELETE function as follows:
DELETE(T, INDEX(T, P), LENGTH(P))

That is, in the text T, we first compute INDEX(T, P), the position where P first occurs in T, and
then we compute LENGTH(P), the number of characters in P. Recall that when INDEX(T, P) =0
(i.e., when P does not occur in T) the text T is not changed.

(a) Suppose T = 'ABCDEFG' and P = 'CD'. Then INDEX(T, P) = 3 and LENGTH(P) = 2. Hence
DELETE ('ABCDEFG', 3, 2) = 'ABEFG'

(b) Suppose T = 'ABCDEFG' and P = 'DC'. Then INDEX(T, P) = 0 and LENGTH(P) = 2. Hence, by the
“zero case,”

DELETE("ABCDEFG ', 0, 2) = ' ABCDEFG '

as expected.

Suppose after reading into the computer a text T and a pattern P, we want to delete every
occurrence of the pattern P in the text T. This can be accomplished by repeatedly applying

DELETE(T, INDEX(T, P), LENGTH(P))

until INDEX(T, P) = 0 (i.e., until P does not appear in T). An algorithm which accomplishes this
follows.

Algorithm 3.1: A text T and a pattern P are in memory. This algorithm deletes every occurrence
of PinT.
1. [Find index of P.] Set K := INDEX(T, P).
2. Repeat while K ! 0:
(a) [Delete P from T.]
Set T := DELETE(T, INDEX(T, P), LENGTH(P))

(b) [Update index.] Set K := INDEX(T. P).

|End of loop.]
3. Write : T.
4. Exit.

We emphasize that after each deletion, the length of T decreases and hence the algorithm must
stop. However, the number of times the loop is executed may exceed the number of times P
appears in the original text T, as illustrated in the following example.

3.16 Data Structures with C

Example 3.9

(a) Suppose Algorithm 3.1 is run with the data
T = XABYABZ, P=AB

Then the loop in the algorithm will be executed twice. During the first execution, the first
occurrence of AB in T is deleted, with the result that T = XYABZ. During the second
execution, the remaining occurrence of AB in T is deleted, so that T = XYZ. Accordingly, XYZ
is the output.

(b) Suppose Algorithm 3.1 is run with the data

T = XAAABBBY, P=AB

Observe that the pattern AB occurs only once in T but the loop in the algonthm will be
executed three times. Specifically, after AB is deleted the first time from T we have
T = XAABBY, and hence AB appears again in T. After AB is deleted a second time from T, we
see that T = XABY and AB still occurs in T. Finally, after AB is deleted a third time from T, we
have T = XY and AB does not appear in T, and thus INDEX(T, P) = 0. Hence XY is the output.

The above example shows that when a text T is changed by a deletion, patterns may occur that
did not appear originally.

Replacement

Suppose in a given text T we want to replace the first occurrence of a pattern P, by a pattern P,.
We will denote this operation by

REPLACE(text, pattern,, pattern,)

For example

REPLACE('XABYABZ', 'AB', 'C') = XCYABZ'
REPLACE('XABYABZ' , 'BA', 'C') = 'XABYABZ'

In the second case, the pattern BA does not occur, and hence there is no change.
We note that this REPLACE function can be expressed as a deletion followed by an insertion if

we use the preceding DELETE and INSERT functions. Specifically, the REPLACE function can
be executed by using the following three steps:

K := INDEX(T, P,)
T := DELETE(T, K, LENGTH(P,))
INSERT(T, K, P,)

The first two steps delete P, from T, and the third step inserts P, in the position K from which P,
was deleted.

Suppose a text T and patterns P and Q are in the memory of a computer. Suppose we want to
replace every occurrence of the pattern P in T by the pattern Q. This might be accomplished by

repeatedly applying
REPLACE(T, P, Q)

String Processing 3.17

until INDEX(T, P) = 0 (i.e., until P does not appear in T). An algorithm which does this
follows.

Algorithm 3.2: A text T and patterns P and Q are in memory. This algorithm replaces every
occurrence of P in T by Q.
1. |Find index of P.] Set K := INDEXI(T, P).

2. Repeat while K ' O:
(a) [Replace P by Q.] Set T := REPLACE(T, P, Q).
(b) [Update index.] Set K := INDEX(T, P).

[End of loop.]
3. Write: 1.
4. Exil.

Warning: Although this algorithm looks very much like Algorithm 3.1, there is no guarantee
that this algorithm will terminate. This fact is illustrated in Example 3.10(b). On the other hand.
suppose the length of Q 1s smaller than the length of P. Then the length of T after each replacement

decreases. This guarantees that in this special case where Q is smaller than P the algorithm must
terminate.

Example 3.10
(a) Suppose Algorithm 3.2 is run with the data
T =XABYABZ, P=AB, Q=1C

Then the loop in the algorithm will be executed twice. During the first execution, the first
occurrence of AB in T is replaced by C to yield T = XCYABZ. During the second execution, the
remaining AB in T is replaced by C to yield T = XCYCZ. Hence XCYCZ is the output.

(b) Suppose Algorithm 3.2 is run with the data

T=XAY, P=A Q=AB

Then the algorithm will never terminate. The reason for this is that P will always occur in the
text T, no matter how many times the loop is executed. Specifically,

T = XABY at the end of the first execution of the loop
T = XAB®Y at the end of the second execution of the loop

T = XAB"Y at the end of the nth execution of the loop
(The infinite loop arises here since P is a substring of Q.)

The following program shows the implementation of INSERTION, DELETION and REPLACE-
MENT algorithms in C:

Program 3.5

#include <stdio.h>
#include <conio.h>

3.18 Data Structures with C

char* SUBSTR(char*,int,int);

int INDEX{char*,char*);

char* INSERT (char*,int,char*);
char* DELETE({(char®*,int, int);
char* REPLACE(char®*,char*,char*);

void main()

{

char S[{80]={“ABCDEFG”"};

char R1[80],R2[E80),R3[80],R4([80],R5([80]1,Re[80];
clrscri();

printf (*STRING = %s",S);
strepy (R1, INSERT(S, 3, *XYZ*));
strcpy (R2, INSERT(S, 6, "XYZ”"));

printf ({*“\n\nINSERT(‘'ABCDEFG’,3, ‘XY2') = %s”",R1l);
printf (*\n\nINSERT('ABCDEFG’,6,'XYZ') = %s",R2);:
strcpy (R3,DELETE(S,4.2));

strcpy (R4, DELETE(S,2,4));

printf (*“\n\nDELETE(*ABCDEFG’,4,2) = %s",R3);
printf (“\n\nDELETE('ABCDEFG’,2,4) = %s8”,R4);
strcpy (R5, REPLACE ("XABYABZ", “AB","C"));

strcpy (R6, REPLACE (*XABYABZ”, "BA”, “"C"));

printf (*\n\nREPLACE(‘XABYABZ','AB','C'}) = %s",R9);
printf (*\n\nREPLACE(‘XABYABZ','BA’','C’) = %s”",R6);

getch();
}

char* INSERT(char* Sl1,int XK,char*sz2)

{
char RESULTI[80];
strcpy (RESULT, SUBSTR(S1,1,K-1}));
strcat (RESULT, S2) ;
strcat (RESULT, SUBSTR{(S1,K,strlen(S1)-K+1));
return (RESULT) ;

)

char* DELETE{({char* Sl,int K,int L}
{
char RESULT([80];
strcpy (RESULT, SUBSTR(S1,1,K~1));
strcat (RESULT, SUBSTR(S1,K+L,strlen(S1)-K~<L+1));
return (RESULT) ;

}

char* REPLACE(char* S1,char* S2,char* S3)

o

Briint K;

 char RES1(80];

- char RES2([80];

| if (INDEX(S1,82)!=-1)
'~ K=INDEX(S1,S2)+1;
else

. return(Sil);

strcpy (RES2, INSERT (RES1,K,S3));
return (RES2) ;

.-Hl'l:,_ AR TR

| char *SUBSTR(char *STR,int i,int)
"'..:'{ .
. char STRRES[80];
- for(k=i-1;k<=i+j-1-1;k++)
{
. 'STRRES [m]=STR[k] ;
S m=Em+l;
RS A

B

——

» &

' STRRES[m]='\0‘';
 return(STRRES) ;
3

4]

. int INDEX(char *STR1l,char *STR2)
odntimengt-
" dint index, flag;

l':hfh'_._'fin:»r:'(m=1=1r‘.!:;rn-.c:;att::".l,uarniS'I'El}4.-*111-«-*»}
ok d!
.~ index=m;
. for(n=0;n<strlen(STR2) ;n++)
A
" if(STR1[m+n]==STR2[n])
Byt

flag=0;

break;

.:;gt;cp?{agsl,nsgngisl,K,strlen{SZ})}:

String Processing

3.19

3.20 Data Structures with C

}
}
if(flag==0)
continue;
else
return(index) ;
}
if (m==strlen(STR1))
return(-1);
)

Output:
STRING = ABCDEFG

INSERT ("ABCDEFG’' ,3, ‘XYZ") = ABXYZCDEFG
INSERT(‘ABCDEFG’, 6, ‘XYZ') = ABCDEXYZFG
DELETE(*ABCDEFG’ ,4,2) = ABCFG

DELETE(‘ABCDEFG’',2,4) = AFG

REPLACE (*XABYABZ' , 'AB',"'C’') = XCYABZ

REPLACE (‘XABYABZ', ‘BA’ , 'C")

I

AABYABZ

3.8 PATTERN MATCHING ALGORITHMS

Pattern matching is the problem of deciding whether or not a given string pattern P appears in a
string text T. We assume that the length of P does not exceed the length of T. This section
discusses two pattern matching algorithms. We also discuss the complexity of the algorithms so
we can compare their efficiencies.

Remark: During the discussion of pattern matching algorithms, characters are sometimes denoted
by lowercase letters (a, b, c, ...) and exponents may be used to denote repetition; e.g.,

a*b’ ab* for aabbbabb and (cd)’ for cdeded

In addition, the empty string may be denoted by A, the Greek letter lambda, and the concatenation
of strings X and Y may be denoted by X-Y or, simply, XY.

First Pattern Matching Algorithm

The first pattern matching algorithm is the obvious one in which we compare a given pattern P
with each of the substrings of T, moving from left to right, until we get a match. In detail, let

Wy = SUBSTRING(T, K, LENGTH(P))

String Processing 3.21

That is, let Wy denote the substring of T having the same length as P and beginning with the Kth
character of T. First we compare P, character by character, with the first substring, W,. If all the
characters are the same, then P = W, and so P appears in T and INDEX(T, P) = 1. On the other
hand, suppose we find that some character of P is not the same as the corresponding character of
W,. Then P # W, and we can immediately move on to the next substring, W,. That is, we next
compare P with W,. If P # W, then we compare P with W, and so on. The process stops (a) when
we find a match of P with some substring Wy and so P appears in T and INDEX(T, P) = K, or
(b) when we exhaust all the Wi's with no match and hence P does not appear in T. The maximum
value MAX of the subscript K is equal to LENGTH(T) - LENGTH(P) + 1.

Let us assume, as an illustration, that P is a 4-character string and that T is a 20-character string,
and that P and T appear in memory as linear arrays with one character per element. That is,

P = P[1]P[2]P[3]P[4] and T = T[1]T[2]T[3] --- T[19]T[20]
Then P is compared with each of the following 4-character substrings of T:
W, = TI1T[2]T(3]T[4], W, = T[2|T[3]T(4]T(5]), ..., W,; = T[17]T[18]T[19]T[20]

Note that there are MAX = 20 - 4 + | = 17 such substrings of T.

A formal presentation of our algorithm, where P is an r-character string and T is an s-character
string, 1s shown in Algorithm 3.3.

Observe that Algorithm 3.3 contains two loops, one inside the other. The outer loop runs
through each successive R-character substring

Wi =TIKITIK + 1] --- TIK + R - 1]

of T. The inner loop compares P with Wy, character by character. If any character does not match,
then control transfers to Step 5, which increases K and then leads to the next substring of T. If all
the R characters of P do match those of some Wy, then P appears in T and K 1s the INDEX of P in
T. On the other hand, if the outer loop completes all of its cycles, then P does not appear in T and
so INDEX = 0.

Algorithm 3.3: (Pattern Matching) P and T are strings with lengths R and S, respectively, and
are stored as arrays with one character per element. This algorithm finds the
INDEX of P in T.

I. [Initalize.] Set K :=1 and MAX : =S ~-R + |.
2. Repeat Steps 3 to 5 while K £ MAX:
3 Repeat for L = | to R: [Tests each character of P.]
If PIL] ' TIK + L - 1], then: Go to Step 5.
[End of inner loop.]
4, [Success.] Set INDEX = K, and Exit.
o Set K =K + 1.
[End of Step 2 outer loop.]
6. |[Failure.] Set INDEX = 0.
1. ‘EXxit.

3.22 Data Structures with C

R o o e Caar e

/* C implementation of Algorithm 3.3*/
$#include <stdio.h>
#$include <conio.h>

void main()

{

char P[B80}={("bab"};

char TI[80]=("aabbbabb”};
int R,S,K,L,MAX, INDEX;

clrscri):

R=strlen(P);
S=strlen(T);
K=0;
MAX=5~-R;

while (K<=MAX)

{
for(L=0;L<R;L++)
if(P[L]!'=T[K+L])

break;

1f {L==R)

{
INDEX=K;
break;

i
else

K=K+1;
)
if (K>MAX)
INDEX=~1;

printf(*P = %s”,P);
printf(*\n\nT = %s",T);

if (INDEX!=-1)

printf (*"\n\nIndex of P in T is %d",INDEX);:

else
printf (*\n\nP does not exist in T");

getch(); -
}

Output:
P = bab

T = aabbbabb

Index of P in T 1is 4

String Processing 3.23

The complexity of this pattern matching algorithm is measured by the number C of comparisons
between characters in the pattern P and characters of the text T. In order to find C, we let N, denote
the number of comparisons that take place in the inner loop when P is compared with Wy. Then

C=NI+N2+”'+NL

where L is the position L in T where P first appears or L = MAX if P does not appear in T. The

next example computes C for some specific P and T where LENGTH(P) = 4 and LENGTH(T) = 20
and so MAX=20-4+1=17.

Example 3.11

(a) Suppose P = aaba and T = cdcd --- c¢d = (cd)'®. Clearly P does not occur in T. Also, for each of
the 17 cycles, N, = 1, since the first character of P does not match W,, Hence

(=1+1+1+ -+1=17

(b) Suppose P = gaba and T = ababaaba.... Observe that P is a substring of T. In fact, P = W, and
so N; = 4. Also, comparing P with W, = abab, we see that N, = 2, since the first letters do
match; but comparing P with W, = baba, we see that N, = 1, since the first letters do not
match. Similarly, N; = 2 and N, = 1. Accordingly,

(=24+1+2+1+4=10

(c) Suppose P = aaab and T = ga --- a = a°°. Here P does not appear in T. Also, every W, = aaaa;
hence every N, = 4, since the first three letters of P do match. Accordingly,

C=4+44+ - +4=17 -4 = 68

In general, when P is an r-character string and T is an s-character string, the data size for the
algorithm is

nN=r+3:

The worst case occurs when every character of P except the last matches every substring Wy, as in
Example 3.10(c). In this case, C(n) = n(s — r + 1). For fixed n, we have s = n — r, so that
Cin)=rin-2r+1)

The maximum value of C(n) occurs when r = (n + 1)/4. (See Problem 3.19.) Accordingly, substituting
this value for r in the formula for C(n) yields

(n+1)° :
Cin) = 2 ='(An")

The complexity of the average case in any actual situation depends on certain probabilities
which are usually unknown. When the characters of P and T are randomly selected from some finite
alphabet, the complexity of the average case is still not easy to analyze, but the complexity of the
average case is still a factor of the worst case. Accordingly, we shall state the following: The complexity
of this pattern matching algorithm is equal to O(n*). In other words, the time required to execute this
algorithm is proportional to n°. (Compare this result with the one on page 3.28.)

Second Pattern Matching Algorithm

The second pattern matching algorithm uses a table which i1s derived from a particular pattern P
but is independent of the text T. For definiteness, suppose

3.24 Data Structures with C

P = aaba

First we give the reason for the table entries and how they are used. Suppose T =T, T,T; ..., where
T, denotes the ith character of T, and suppose the first two characters of T match those of P; i.e.,
suppose T = aa.... Then T has one of the following three forms:

(1) T=aab..., (1) T =aaa...., (i) T = aax

where x is any character different from a or b. Suppose we read T, and find that T; = b. Then we
next read T, to see if T4 = a, which will give a match of P with W,. On the other hand, suppose
T; = a. Then we know that P # W; but we also know that W, = aa..., 1.e., that the first two
characters of the substring W, match those of P. Hence we next read T, to see if T, = b. Last,
suppose Ty = x. Then we know that P # W, but we also know that P # W, and P # W, since x
does not appear in P. Hence we next read T, to see if Ty = a, i.e., to see if the first character of W,
matches the first character of P.

There are two important points to the above procedure. First, when we read T; we need only
compare T, with those characters which appear in P. If none of these match, then we are in the last
case, of a character x which does not appear in P. Second, after reading and checking T;, we next
read T,; we do not have to go back again n the text T.

Figure 3.8(a) contains the table that is used in our second pattern matching algorithm for the
pattern P = aaba. (In both the table and the accompanying graph, the pattern P and its substrings Q

will be represented by italic capital letters.) The table is obtained as follows. First of all, we let Q.
denote the initial substring of P of length i; hence

QD = A, QI = d, QZ = ﬂzv Q3 - ﬂ:b‘l Q4 = ﬂzbﬂ =P
(Here Q, = A is the empty string.) The rows of the table are labeled by these initial substrings of P,

excluding P itself. The columns of the table are labeled @, b and x, where x represents any
character that doesn’t appear in the pattern P. Let f be the function determined by the table; i.e., let

AQ;, 1)

a b X
an {31 Du au
01 Q ? Gﬂ oﬂ
O;_r 02 03 GD
Qs P Qo Qo

{a) Pattern matching table

S

(a) Pattern matching graph

Fig. 3.8

String Processing 3.25

denote the entry 1n the table in row @, and column 7 (where 1 is any character). This entry Q.. 1) 1s
defined 10 be the largest ¢ that appears as a terminal substring in the string Q. the concatenation
of Q- and r. For example,

a is the largest Q that is a termina! substring of O,a = a’, so [Qs, a) = @,
A 1s the largest Q that 1s a terminal substring of Q.6 = ab, so fiQ,, b) = Q;
a 1s the largest Q that is a terminal substring of Qya = a, so fiQ,, a) = @,
A is the largest Q that is a terminal substring of Qsa = a’bx, so fiQ,, x) = Q,

and so on. Although ¢, = a 1s a tcrmmal substring of Osa = a’, we have Qs a) = (), because Q,
is also a terminal substring of Q,a = a” and Q, is larger than Q,. We note that fiQ,, x) = Q, for any
(2, since x does not appear in the pattern P, Accordingly, the column corresponding to x 1s usuaily
omitted from the table,

Our table can also be pictured by the labeled directed graph in Fig. 3.8(b). The graph is
obtained as follows. First, there is a node in the graph corresponding (o each initial substring Q, of
F. The Q's are called the states of the system, and Q) 1s called the initial state. Second, there is an
arrow (a directed edge) in the graph corresponding to each entry in the table. Specifically, if

f{QJ:- [l = Q,I

then there is an arrow labeled by the character 1 from Q, to Q,. For exampie, f(Q,. b) = Q;, so there
is an arrow labeled b from @, to (4. For notational convenience, we have omitted all arrows
labeled x, which must lead to the wmitial state Q.

We are now ready to give the second pattern matching algorithm for the pattern P = aaba. (Note that
in the following discussion capital letters will be used for all single-letter variable names that appear
in the algorithm.) Let T =T, T,T; --- Ty denote the n-character-string text which is searched for the
pattern P. Beginning with the initial state ¢, and using the text T, we will obtain a sequence of states
S1: 55 S5, .. as follows. We let S, = ¢, and we read the lirst character T . From either the table or the
araph in Fig. 3.8, the pair (S,, T,) vields a second state S,; that is, F(S,, T;) = §,. We read the next
character T,. The pair (S,, T,) vields a state S, and so on. There are two possibilities:

. Some state Sg = P, the desired pattern. In this case, P does appear in T and 1ts index 1s

K — LENGTH(P).

2. Nostate S, S,, ..., Sy ., 1s equal to P, In this case, P does not appear in T.

We illustrate the algorithm with two diftferent texts using the pattern P = aaba.

'Example 3.12

(a) Suppose T = agbcaba. Beginning with @Q,, we use the characters of T and the graph (or table)
in Fig. 3.8 to obtain the following sequence of states:

QU (a 301 (o 502 __ 0 303 {¢ iﬂﬂ (o 301 (b iuu (a 501_

We do not obtain the state P, so P does not appear in T.
(b) Suppose T = abcaabaca. Then we obtain the following sequence of states:

Q, —2-Q, —£0q, —%£—0, —2 0, —2 0, —2—Q, —2F

Here we obtain the pattern P as the state S,. Hence P does appear in T and its index 1s
8 - LENGTH(P) = 4

The formal statement of our second pattern matching algorithm follows:

3.26 Data Structures with C

Algorithm 3.4: (Pattern Matching). The pattern matching table F(Q,, T) of mpm P is m
memory, and the input is an N-character string T = T,T; e TH,_M,_ gorithm
finds the INDEX of P in T. e W

1. [lnmallze]SetK-landS, Qo AR e gz v LT

2. Repeat Steps 3 to 5 while SK'PandK:EN ARy e R

3. Read Ty. € o RN Ty

4 Set S ,; := F(Sk, Tx). [Finds next state.]

5 Set K = K +']1. {Updates'counter.] i ™ =0l sl USRS She
[End of Step 2 loop.] et e i Rl

6. [Successful?) ~ e B .
If S = P, then: - S ARSI
INDEX = K - LENGTH(P). | pdiz SEG U &
Else:
INDEX = 0.
[End of If structure.]
7. Exit

/* C implementation nf_Algurithm 3.4*/
#include <stdio.h>

#include <conio.h>

char F(char,char);

int state(d4](3];

void main()

{

char P[80]={“aaba”“)};

char T([80])={(“abcaabaca”}:
int N,K,S,I,INDEX:;
clrscr();

state[0][0]=1;
state(0][1]=0;
state([0][2]=0;
state[l][0]=2;
state(1l][1]1=0;
state[l][2]=0;
state([2][0]=2;
state[2][1]1=3;
state[2][2]=0;
state(3][0]=-1;

state(3][11=0;

state[3][2]=0;

N=strlen(T);
K=0;

;-5=0:

R

. while(K<N && S!=-1)
Rtk '

if(TlK}==fa'}

I=0:

: if{T[K1=='b'}
I=1;

AE(TIK)=='x")

I=2;

S=F(S,I);
K=K+1;
}

. if(§==-1)

INDEX=K-strlen(P);

- else

INDEX=-1;

 printf("P = %s”,P);
- printf("\n\nT = %s”,T);

if (INDEX!=-1)
printf(*"\n\nIndex of P in T is $%d*, INDEX);

Lralae

printf("\n\nP does not exist in T”);

‘getchl();

iR,

'char F(char SK,char TK)

{
return(state[SK] [TK]) ;

- ODutput:

P = aaba
T = abcaabaca

Index of P in T is 3

String Processing

3.27

3.28

Data Structures with C

The running time of the above algorithm is proportional to the number of times the Step 2 loop
1s executed. The worst case occurs when all of the text T is read, i.e., when the loop is executed
n = LENGTH(T) times. Accordingly, we can state the following: The complexity of this pattern
matching algorithm is equal to O(n).

Remark: A combinatorial problem is said to be solvable in polvnomial time if there is an algorithmic
solution with complexity equal to O(n™) for some m, and it is said to be solvable in linear time if
there is an algorithmic solution with complexity equal to O(n), where n is the size of the data.
Thus the second of the two pattern matching algorithms described in this section is solvable in
linear time. (The first pattern matching algorithm was solvable in polynomial time.)

SOLVED PROBLEMS

Terminology; Storage of Strings

3.1

3.2

3.3

Let W be the string ABCD. (a) Find the length of W. (b) List all substrings of W. (¢) List all
the initial substrings of W,

(a) The number of characters in W is its length, so 4 is the length of W,
(b) Any subsequence of characters of W is a substring of W. There are 11 such substrings:

Substrings: ABCD, ABC, BCD, AB,BC,CD, A, B,C, D, A

"

Lengths: 4 3 2 | 0

(Here A denotes the empty string.)
(c) The initial substrings are ABCD, ABC, AB, A, A; that is, both the empty string and those
substrings that begin with A.

Assuming a programming language uses at least 48 characters—26 letters, 10 digits and a
minimum of [2 special characters—give the minimum number and the usual number of
bits to represent a character in the memory of the computer.

Since 2° < 48 < 2° one requires at least a 6-bit code to represent 48 characters. Usually a
computer uses a 7-bit code, such as ASCII, or an 8-bit code, such as EBCDIC, to represent
characters. This allows many more special characters to be represented and processed by the
computer.,

Describe briefly the three types of structures used for storing strings.

(a) Fixed-length-storage structures. Here strings are stored in memory cells that are all of
the same length, usually space for 80 characters.

(b) Variable-length storage with fixed maximums. Here strings are also stored in memory cells
all of the same length: however, one also knows the actual length of the string in the cell.

(c) Linked-list storage. Here each cell is divided into two parts: the first part stores a single
character (or a fixed small number of characters), and the second part contains the
address of the cell containing the next character.

Stnng Processing - 3.29

3.4 Find the string stored in Fig. 3.9, assuming the link value O signals the end of the list..

Here the string 1s stored in a linked-list structure with 4 characters per node. The value of
START gives the location of the first node in the list:

4 [ATH |2

The link value in this node gives the location of the next node in the list:

2 |ING |7
Continuing in this manner, we obtain the following sequence of nodes:

(|0YF im—r-nnev s|—'>lEF|. \n

7 |OF B 11|—>EAUT 12 —>{ YIS [8 — AJ‘1)

START CHAR LINK
4 1 |OYF |10
o 2 [ING | 7

; -

. 4 |ATH | 2

5

6 | ER 0
7 | oFB | 11
8 | AJ E
9

10 | OREV | 6
11 | EAUT | 12
12 |vis | @
Fig. 3.9

Thus the string 1s:
A THING OF BEAUTY IS A JOY FOREVER.

3.5 Give some (a) advantages and (b) disadvantages of using linked storage for storing strings.

(a) Onecaneasily insert, delete, concatenate and rearrange substrings when using linked storage.
(b) Additional space is used for storing the links. Also, one cannot directly access a character

in the middle of the list.

""f»iﬂ Data Structures with C

3.6 Demnbe briefly the meaning of (a) static, (b) semistatic and (¢) dynamic character variables.

(a) The length of the variable is defined before the program is executed and cannot change
during the execution of the program.

(b) The length of the variable may vary during the execution of the program, but the length
cannot exceed a maximum value defined before the program is executed.

(c) The length of the variable may vary during the execution of the program.

3.7 Suppose MEMBER is a character variable with fixed length 20. Assume a string is stored
left-justified in a memory cell with blank spaces padded on the right or with the right-most
characters truncated. Describe MEMBER (a) if ‘JOHN PAUL JONES’ is assigned to
MEMBER and (b) if ‘ROBERT ANDREW WASHINGTON" is assigned to MEMBER.

The data will appear in MEMBER as follows:
(a) MEMBER [J|O[H|N] [P[A[U[L] [Js]o[N[E[S] [[[|

(b) MEMBER [R]O[B[E[R| T[] [AIN[D[RIE s[H[1]N

String Operations
In Solved Problems 3.8 to 3.11 and 3.13, let S and T be character variables such that

S = 'JOHN PAUL JONES'
T ="'A THING OF BEAUTY IS A JOY FOREVER!'

3.8 Recall that we use LENGTH(string) for the length of a string.
(a) How 1s this function denoted in C?
(b) Find LENGTH(S) and LENGTH(T).

(a) In C, the length of a string can be determined using the strlen library function, as shown
below:

(b) Assuming there is only one blank space character between words,

LENGTH(S) = 15 and LENGTH(T) = 35

3.9 Recall that we use SUBSTRING(string, position, length) to denote the substring of string
beginning 1n a given position and having a given length. Determine (a) SUBSTRINGS(S,

4, 8) and (b) SUBSTRING(T, 10, 5).

(a) Beginning with the fourth character and recording 8 characters, we obtain
SUBSTRING(S, 4, 8) = 'NOPAULLOYS

(b) Similarly, SUBSTRING(T, 10, 5) = ' FOBEAU'

3.10

3.11

3.12

3.13

String Processing 3.31

Recall that we use INDEX(text, pattern) to denote the position where a pattern first
appears in a text. This function is assigned the value 0 if the pattern does not appear in
the text. Determine (a) INDEX(S. 'JO"), (b) INDEX(S. JOY"), (¢) INDEX(S, 'JJO",
(d) INDEX(T, 'A"), (e) INDEX(T, ‘00AL’) and (f) INDEX(T, "THE". :

(a) INDEX(S, JO') = 1, (b) INDEX(S. 'JOY") = 0, (¢) INDEX(S, ' OJO") = 10, (d) INDEX(T,
'A')Y =1, (e) INDEX(T, '0OA0") = 21 and () INDEX(T, 'THE') = 0. (Recall that [0 is used
to denote a blank space.)

Recall that we use S,//S, to denote the concatenation of strings S, and S..

(a) How is this function denoted in C?

(b) Find (i) 'THE' // 'END' and (ii) "THE' // 'O0'//'END'.s

(c) Find (i) SUBSTRING(S, 11, 5y/',07/SUBSTRING(S, 1, 9) and (ii) SUBSTRING
(T, 28, 3)/fGIVEN..

(a) In C, the concatenation of strings is performed using the strcat libary function, as
shown below:

strcat(S1,S82); // this function call will concatenate strings Sl
and S2 and store the result in S1

(b) S,//S, refers to the string consisting of the characters of S, followed by the characters
of S,, Hence, (i) THEEND and (ii) THE END.
(¢) (i) JONES, JOHN PAUL and (11) FORGIVEN.

Recall that we use INSERT(text, position, string) to denote inserting a string S in a given
text T beginning in position K.

(a) Find (i) INSERT('AAAAA' |, 'BBB"), (i1) INSERT('AAAAA', 3, 'BBB') and
(iti) INSERT(CAAAAA', 6, 'BBB').

(b) Suppose T is the text 'THE STUDENT IS ILL." Use INSERT to change T so that it
reads: (i) The student is very ill. (ii) The student is ill today. (iii) The student is very
ill today.

(a) (i) BBBAAAAA, (ii)) AABBBAAA and (i) AAAAABBB.

(b) Be careful to include blank spaces when necessary. (i) INSERT(T, 15, 'OVERY").
(i1) INSERT(T, 19, 'OTODAY"). (iii) INSERT(INSERT(T, 19, 'OTODAY"), 15,
'OVERY") or INSERT(INSERT(T, 15, 'OVERY"), 24, 'O0TODAY").

Find

(a) DELETE('AAABBB', 2, 2) and DELETE('JOHN PAUL JONES/ 6, 5)
(b) REPLACE('AAABBB', 'AA’, 'BB’) and
REPLACE('JOHN PAUL JONES', 'PAUL', 'DAVID’)

(a) DELETE(T, K, L) deletes from a text T the substring which begins in position K and
has length L. Hence the answers are

Data Structures with C

ABBB and JOHN JONES

(b) REPLACE(T, P,, P,) replaces in a text T the first occurrence of the pattern P, by the
pattern P,. Hence the answers are

BBABBB and JOHN DAVID JONES

Word/Text Processing

In Solved Problems 3.14 to 3.17, S is a short story stored in a linear array LINE with n elements
such that each LINE[K] is a static character variable storing 80 characters and representing a line
of the story. Also, LINE[1], the first line, contains only the title of the story, and LINE[N], the last
line, contains only the name of the author. Furthermore, each paragraph begins with 5 blank

spaces, and there 1S no other indention except possibly the title in LINE[]] or the name of the
author in LINE[N].

3.14 ‘Wnte a procedure which counts the number NUM of paragraphs in the short story S.

Beginning with LINE|[2] and ending with LINE[N — 1], count the number of lines begmmng
with 5 blank spaces. The procedure follows.

Proudure P3.14: PAR(LINE, N, NUM)

1. Set NUM := 0 and BLANK :='0000O0 g

2. [Initialize counter.] Set K := 2.

3. Repeat Steps 4 and 5 while K <N - 1. s

4. [Compare first 5 characters of each line with BLANK.]
If SUBSTRING(LINE[K], 1, 5) = BLANK, then: = T_u'._'

Set NUM := NUM + 1. -

[End of If structure.)

£, Set K := K + 1. [Increments counter.]

[End of Step 3 loop.]
6. Return.

.‘,r_: Ly

/* C implementation of Procedure P3.14 */
',r_.,.'llinclude <sgtdio.h>
~ #include <conio.h>
. #include <string.h>

~ char S[10](80]1=({"This is the story of a boy"},
= {"who lived in Delhi®},

£ His name was Rohan”},
{"He was studying engineering”},
Ay His favorite subject was DS"},

"r {*He was good in string handling”}};

ixft AR (char([] [80], int, int);
"::pa.r* SUBSTR (char*, int, int) ;

™M
™ .
™

g

Sir

:I' -
O PS
DAR

r
k

g
#
'

F
o

#
|
i

S

-
-
i
L]
o
i __
—
|- T
-
" _ 1
] -
L =
[] . p—
4 L
i
{ I] — i
.l o
r
. n.n. "
_— ! 1
i —s] Bog
L
il r- |l !
[
.- .
L]
T |
- ¥ ¥ -
1
w s

..
[= &) o iy LaE iy
- 3 .| —_— 4
i | i
-—d [o o
.] - e + — -

i
L | " # = ¥ ' bl - - | i
-1 . i
WL - r— i = — F —rerd
ey " | ._ . L 2 =4 L = i
—_ Y — —— —
-— F | ——— - i
L] i . y — - ri - . LA __ L
—k -
- - i
- | i d 1 = | i 4
= - ¥ - 1 ['}
b oon i | iy i —
e ’ — P
[} i - il e r ¥ r - —
— A _-... — = =1 1 . o a E ! 2
i "
' = — =
e L — -....-_ L ——p =i i — r N - L | —
L] 5 - - - S a
._I..l. e ard . z f | = il b
= ¥ # I i " | = w T -
-y - ¥ d e -
e —-— W - - - - 4=
i i —— = | - ¥ L = { o
¥ L] - ko -
B : - - [a 'l " "
b F b - i L 1 ¥ A= 1 —1 i r ¥ _ b 1
il LI - | - - Fa 1 i e | 3 L
L - - - " hd = i
c , e . | - _ LI I L - L™ (L 4
- - " L
" [¥ - ‘a . i o . 4 L | - [P P 1 o= —
] f il 5
4 [' | P e - — 4 _ - v " - '
y .] [| k
" | = e = il L _ 4 - r -]
e [| s = - = = i - i Ao P
4 L (- a a & i . i = - t ; i | =
e | _. ”- - P L 1 [- B _.._ & — | "
_— — 1 i J [H = v i ' - |
..,.... _- s ! [l = VP - —— . v
P
L1 — L i s e |
— 5 | - —
o = | ot i L] [|

3.34 Data Structures with C

)
STRRES[m]}=*\0";
return (STRRES) ;
}

Output:
The number of paragraphs in short story S§ are 2

3.15 Write a procedure which counts the number NUM of times the word “the” appears in the

short story S. (We do not count “the” in “mother,” and we assume no sentence ends with
the word “the.”

Note that the word “the” can appear as THEL] at the beginning of a line, as OTHE at the
end of a line, or as OTHEDO elsewhere in a line. Hence we must check these three cases
for each line. The procedure follows.

Procedure P3.15: COUNT(LINE, N, NUM)
1. Set WORD :='THE' and NUM := 0.
2. [Prepare for the three cases.]
Set BEG := WORD//'0O', END :='00°//WORD and
MID :="'00" /IWORD/ 'L]".
3. Repeat Steps 4 through 6 for K = 1 to N:

4, [First casc.] If SUBSTRING(LINE(K], 1, 4) = BEG, then:
Set NUM = NUM + 1.
5. [Second case.] If SUBSTRING(LINE[K], 77, 4) = END, then:
Set NUM = NUM + 1|.
6. [General case.] Repeat for J = 2 to 76.

If SUBSTRING(LINE[K]. J, 5) = MID, then:
Set NUM := NUM + .
|[End of If structure.|
[End of Step 6 loop.]
[End of Step 3 loop.]
7. Return.

Program 3.9
/* C implementation of Procedure 3.15 */
ginclude <stdio.h>

#include <conio.h>»
#include <string.h>

char S5[10][80]={{"This is the story of a boy"},
{*who lived in Delhi”},
His name was Rohan®},
{"THE Dummy Text: Checking THE use of THE string THE”},

v T = - e o b,
I A o = "’-.,.'l-.'l'E_,

P s G W WAL A W% o Ld b | B

was DS”"},
handling”}}:;

LY
F' ATY = ¥ - iy, il % . il =
{ "He was good 1n string

int COUNT(char[]1[80].,int,int):;
char* SUBSTR(char*,int,in
vold main()

int NUM,N:

clrscr () ;

NUM=0

N=6:;

printf(“The number of instances of WORD in
sQ” ,COURT(S,N,NUM)) ;

getchi();

1

int COUNT(char S1[][80],int N1,int NUM1)

int K:

S = =
e N -

f
char B 1103={"THE *}:
char END[10]}={" THE")};
char MID[10]={™ THE *“}:
char TEMP[80];

K=0:

while (K<N1l)

i
-

I._J.

while(S1l[(K][1])!="

{
TEMP[i]=S1[K] [1i];
1=1+1;
}
TEMP[i]='\0"';
if (strcmp (SUBSTR(TEMP,1,4),BEG)==0)
NUM1=NUM1+1;
if(strcmp (SUBSTR (TEMP,strlen(TEMP)-3,4),END)==0)
NUM1=NUM1+1;
for (J=2;J<strlen(TEMP)-5;J++)
if(strcmp (SUBSTR(TEMP,J,5) ,MID)==0)
NUM1=NUM1+1;

String Processing

short

story S

3.35

dl €

3.36 Data Structures with C

K=K+1;
)
return (NUM1) ;
}

char* SUBSTR(char *STR,int i,int 3j)
{
int k,m=0;
char STRRES[80];
for(k=i-1l;k<=i+j-1-1;k++)
{
STRRES[m]=STR[k];
m=m+1;
}
STRRES[m]="\0";
return (STRRES) ;
}

Output:
The number of instances of WORD in short story S ares 4

3.16 Discuss the changes that must be made in Procedure P3.15 if one wants to count the
number of occurrences of an aribitrary word W with length R.

There are three basic types of changes.
(a) Clearly, 'THE' must be changed to W in Step 1.

(b) Since the length of W is r and not 3, appropriate changes must be made in Steps 3 to 6.
(¢) One must also consider the possibility that W will be followed by some punctuation,

e.g.,
W, W; W. W?
Hence more than the three cases must be treated.

3.17 Outline an algorithm which will interchange the kth and lth paragraphs in the short story S.
The algorithm reduces to two procedures:
Procedure A. Find the values of arrays BEG and END where

LINE[BEG[K]] and LINE[END([K]]

contain, respectively, the first and last lines of paragraph K of the story S.

Procedure B. Using the values of BEG|K] and END|[K] and the values of BEG|L] and

ENDIL], interchange the block of lines of paragraph K with the block of
lines of paragraph L.

String Processing

Pattern Matching

3395

3.18 For each of the following patterns P and texts T, find the number C of comparisons to

3.19

find the INDEX of P in T using the “slow” algorithm, Algorithm 3.3:
RIC . ke (n:'.i'b)5 = ababababab (b) P = abe, T = (ab)™"

(¢) P = aaa, T = (aabb)’ = aabbaabbaabb (d) P = aaa. T = abaabbaaabbbaaaabbbb

Recall that C = N, + N, + --- + N, where N, denotes the number of comparisons that take

place in the inner loop when P is compared with W,

(a) Note first that there are
LENGTH(T) - LENGTH(P) + 1=10-3+1=38
substrings Wy. We have
C=2+14+2+1+2+1+2+1=43)=12

and INDEX(T, P) = 0, since P does not appear in T.
(b) There are 2n - 3 + 1 = 2(n — 1) subwords Wy. We have

C=2+1+2+1+--+2+1=n+1)3)=3n+3

and INDEX(T, P) = 0.
(c) There are 12 - 3 + 1 = 10 subwords Wy . We have

C=3+2+1+1+3+2+1+1+3+2=19

and INDEX(T, P) = 0.
(d) We have

C=24+14+3+2+1+1+3=13
and INDEX(T, P) = 7.

Suppose P is an r-character string and T is an s-character string, and suppose C(n) denotes
the number of comparisons when Algorithm 3.3 i1s applied to Pand T. (Here n = r + s.)

(a) Find the complexity C(n) for the best case.
(b) Prove that the maximum value of C(n) occurs when r = (n + 1)/4.

(a) The best case occurs when P is an initial substring of T, or, in other words, when

INDEX(T, P) = 1. In this case C(n) = r. (We assume r < s.)
(b) By the discussion in Sec. 3.7,

C=C(n)=r(n-2r+l)=nr-2r2+r

Here n is fixed, so C = C(n) may be viewed as a function of r. Calculus tells us that the
maximum value of C occurs when C’ = dc/dr = 0 (here C’ is the derivative of C with

respect to r). Using calculus, we obtain:
C'=n-4r+1
Setting C” = 0 and solving for r gives us the required result.

3.38

Data Structures with C

3.200 Consider the pattern P = aaabb. Construct the table and the corresponding labeled directed

araph used m the “fast.”™ or second pattern matching, algorithm,

First list the initial segments of P:
Q=A, QO =a Qy=a’ Qy=a., Q=ab Qs=ak’

For each character 1, the entry flQ;, 1) in the table is the largest Q which appears as a
terminal substring in the string Q. We compute:

flA, a) = a, fla, a) = a*, f(a*, a) = a’, fla', a) = a, fla’h, a) = a

fIANBDY=A, fla,b)=A. f(@, b)= A, fla’, by =a'b, fla’h, b)=P
Hence the required table appears in Fig. 3.10(a). The corresponding graph appears in
Fig. 3.10(b), where there 1s a node corresponding to each @ and an arrow from Q; to @,
labeled by the character 7 for each entry fQ;, 1) = ©Q; in the table.

a b
Qo Q4 Qg
Q; Q- Qo
GE Q:! Gﬂ
Qs Qs Qg
Qs Q, P
(a)
a

(b)
Fig. 3.10

3.21 Find the table and corresponding graph for the second pattern matching algorithm where

the pattern is P = ababab.

The initial substrings of P are:

G=A Q,=a, Q,=ab, Qy=aba, Q,=abab, Qs = ababa, « = ababab = P
The function f giving the entries in the table follows.

AA.a)=a A, b)=A

Ra, a) =a Ra, b) = ab
fab, a) = aba flab, b) = A
flaba, a) = a faba, b) = abab
fabab, a) = ababa flabab, b) = A
Rababa, a) = a Rababa, b) = P

The table appears in Fig. 3.11(a) and the corresponding graph appear- in. ":z. 3.11(b).

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

3.40 Data Structures with C

3.4 Suppose STATE is a character variable with fixed length 12. Describe the contents of
STATE after the assignment (a) STATE := 'NEW YORK' (b) STATE := 'SOUTH
CAROLINA' and (¢) STATE := 'PENNSYLVANIA".

String Operations
In Supplementary Problems 3.5 to 3.10, let S and T be character variables such that

S = 'WE THE PEOPLE' and T ='OF THE UNITED STATES'

Implement the problems using C programs

3.5 Find the length of S and T.

3.6 Find (a) SUBSTRING(S, 4, 8) and (b) SUBSTRING(T, 10, 5).

3.7 Find (a) INDEX(S, 'P), (b) INDEX(S, 'E'), (¢) INDEX(S, 'THE"), (d) INDEX(T, 'THE'),
(e) INDEX(T, 'THEN") and (f) INDEX(T, 'TE").

3.8 Using S,//S, to stand for the concatenation of S; and S,, find (a) 'NO//'EXIT', (b) 'NO'/ '’
// 'EXIT and (¢c) SUBSTRING(S, 4, 10)//OARED’ //SUBSTRING(T, 8, 6).

3.9 Find (a) DELETE('AAABBB, 3, 3), (b) DELETE('AAABBB', 1, 4), (¢) DELETEC(S, 1, 3)
and (d) DELETE(T, 1, 7).

3.10 Find (a) REPLACE('ABABAB’, 'B', 'BAB'"), (b) REPLACE(S, 'WE', 'ALL'") and
(¢) REPLACE(T, 'THE', "'THESE"). |

3.11 Find (a) INSERT('AAA', 2, 'BBB"), (b) INSERT('ABCDE', 3, 'XYZ') and (c) INSERT
('THE BOY', 5, 'BIG0O").

3.12 Suppose U is the text 'MARC STUDIES MATHEMATICS'. Use INSERT to change U so

that it reads: (a) MARC STUDIES ONLY MATHEMATICS. (b) MARC STUDIES
MATHEMATICS AND PHYSICS. (c) MARC STUDIES APPLIED MATHEMATICS.

Pattern Matching

3.13 Consider the pattern P = abc. Using the “slow"” pattern matching algorithm, Algorithm 3.3,
find the number C comparisons to find the INDEX of P in each of the following texts T:
(a) a'®, (b) (aba)'®, (c) (cbab)'®, (d) d'° and (e) d" where n > 3.

3.14 Consider the pattern P = a°b. Repeat Problem 3.34 with each of the following texts T:
(a) a*’, (b) @" where n > 6: (¢) d°° and (d) d" where n > 6.

3.15 Consider the pattern P = a’ba. Construct the table and the corresponding labeled directed
graph used in the “fast” pattern matching algorithm.

3.16 Repeat Problem 3.15 for the pattern P = aba’b.

In Programming Problems 3.1 to 3.3, assume the preface of this text is stored in a linear array
LINE such that LINE[K] 1s a static character variable storing 80 characters and represents a line of
the preface Assume that each paragraph begins with 5 blank spaces and there is no other inden-
tion. Also, assume there 1s a variable NUM which gives the number of lines in the preface.

3.1

3.2

3.3

String Processing 3.41

Write a program which defines a linear array PAR such that PAR[K] contains the location of
the Kth paragraph, and which also defines a variable NPAR which contains the number of
paragraphs.

Write a program which reads a given WORD and then counts the number C of times WORD
occurs in LINE. Test the program using (a) WORD = 'THE' and (b) WORD = 'HENCE'.
Write a program which interchanges the Jth and Kth paragraphs. Test the program using
J=2and K = 4.

In Programming Problems 3.4 to 3.9, assume the preface of this text is stored in a single character
variable TEXT. Assume 5 blank spaces indicates a new paragraph.

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11

Write a program which constructs a linear array PAR such that PAR[K] contains the loca-
tion of the Kth paragraph in TEXT, and which finds the value of a variable NPAR which
contains the number of paragraphs. (Compare with Programming Problem 3.1.)

Wnite a program which reads a given WORD and then counts the number C of times WORD
occurs in TEXT. Test the program using (a) WORD = 'THE' and (b) WORD = 'HENCE'.
(Compare with Programming Problem 3.2.)

Write a program which mterchanges the Jth and Kth paragraphs in TEXT. Test the program
using J = 2 and K = 4. (Compare with Programming Problem 3.3.)

Write a program which reads words WORDI and WORD2 and then replaces each occur-
rence of WORDI1 in TEXT by WORD?2. Test the program using WORDI1 = '"HENCE' and
WORD2 = 'THUS’

Write a subprogram INST(TEXT. NEW, K) which inserts a string NEW into TEXT begin-
nming at TEXT|K].

Whrite a subprogram PRINT(TEXT, K} which prints the character string TEXT in lines with at
most K characters. No word should be divided in the middle and appear on two lines, so some
lines may contain trailing blank spaces. Each paragraph should begin with its own line and be
indented using 5 blank spaces. Test the program using (a) K = 800, (b) K = 70 and (¢) K = 60.
Write a program to find the distance between two character strings,

Write a program with three short strings, about 6 characters each, and use stropy to copy
one, two, and three in'e them. Concatenate the three strings into one string and print the
result out 10 times.

MULTIPLE CHOICE QUESTIONS

3.1

3.2

Computers are used for processing 3.3 Finite sequence S of zero or more
numerical data called data. characters is called .

(a) Float (b) Local (a) Array (b) List

(c) Character (d) Nonlocal (¢) String (d) Block

Each programming language contains a 3.4 String with zero characters is called

set that is used to communicate string.
with the computer. (a) NULL (b) Binary
(a) Character (b) Integer (¢) Totalled (d) List

(c) Float (d) Numeric 3.5 A computer which can access an

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

L]
’ -
i

wnapter 4
Arrays, Records and Pointers

41 INTRODUCTION

Data structures are classified as either linear or nonlincar. A data structure is said to be linear if 1ts
elements form a sequence, or, in other words, a linear list. There are two basic ways of representing
such linear structures in memeory. One way is to have the linear relationship between the elements
represented by means of sequential memory locations. These lhinear structures are called arrays
and form the main subject matter of this chapter. The other way is to have the linear relationship
between the elements represented by means of pointers or links, These linear structures are called
linked lists: they form the main content of Chapter 5. Nonlinear structures such as trees and graphs
are treated in later chapters.

The operations one normally performs on any linear structure, whether it be an array or a linked
list, include the following:

(a) Traversal. Processing each element in the hist.

(b} Search. Finding the location of the element with a given value or the record with a given
key.

(c) Insertion. Adding a new element to the hist.

(dy Deletion. Removing an element from the hst.

(e} Sorting. Arranging the elements m some type of order.

(1) Mervig. Combining two hists mto a single st

The particular hinear structure that one chooses for a given situation depends on the relative
frequency with which one performs these ditferent operations on the structure.

This chapter discusses a very common linear structure called an array. Since arrays are usually easy
(o traverse, search and sort, they are frequently vsed to store relatively permanent collections of data.
On the other hand, if the size of the structure and the data in the structure are constantly changing, then
the array may not be as useful a structure as the hnked hist, discussed m Chapter 5.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Arrays, Records and Poinlers 4.3

ﬁ:to begin the index set with 1932 so that |

ﬂii 0 _ AUTO[K] = number of automobiles sold in the year K s
N i Theﬂ LB = 1932 is the lower bound and UB = 1984 is the upper bound of AUTO. By Eq. (4.1),
e - Length = UB - LB + 1 = 1984 - 1930 + 1 = 55

That is, AUTO contains 55 elements and its index set consists of all integers from 1932
through 1984,

'f* ' s il
Befin:lng Arrays in C*/
4inc1uda <stdio.h>
_main()
:";'.'{ _ |
@ int af10); //1
v for(int 1 = 0;i<10;i++)
)
afil=1i;

}
printaray(a);

“}
wvoid printaray(int all)
~{
for(int i = 0;i<10;i++)
; _
printf("Value in the array %d\n”",a(i]);
}

i

The above program helps to define an array. Statement | defines an array of integers of the size 10,
which means you can store 10 integers. When we define the array, the size should be known. Subscripts
are used to refer the elements of the array where 0 is considered to be the lowest subscript always and
the highest subscript is (size —1), which is 9 in this case. We can refer to any element as a[0], a[1],
al2], etc.

An array can also be processed using a for loop. The consecutive memory locations of the array
are allocated and the element size is the same. We should always keep in mind that among all the
operators used the subscript of this array must have the highest precedence.

Each programming language has its own rules for declaring arrays. Each such declaration must
give, implicitly or explicitly, three items of information: (1) the name of the array, (2) the data
type of the array and (3) the index set of the array.

Example 4.2

(a) Suppose DATA is a 6-element linear array containing real values. C language declares such an
array as follows:

float DATA[6];

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

: 4.6 Data Structures with C

In each stage we can see that either r is decreased or y is increased, thus showing the
algorithm is finite and the length |X| of the region X, which is r + 1 - y decreases each time, and
the ‘sorted’ condition
B<Y<X<R
remains true. When X = 0, the algorithm terminates, and thus we get our sorted List. The loop
executed N number of times there are |B| + [R]| calls to the routine swap.

4.4 REPRESENTATION OF LINEAR ARRAYS IN MEMORY

Let LA be a linear array in the memory of the computer. Recall that the memory of the computer is
simply a sequence of addressed locations as pictured in Fig. 4.3. Let us use the notation

LOC(LA[K]) = address of the element LA[K] of the array LA

1000

1001
1002

1003 ‘ '

1004

Fig. 43 Computer Memory

As previously noted, the elements of LA are stored in successive memory cells. Accordingly, the
computer does not need to keep track of the address of every element of LA, but needs to keep
track only of the address of the first element of LA, denoted by

Base(LA)

and called the base address of LA. Using this address Base(LA), the computer calculates the
address of any element of LA by the following formula:

LOC (LA[K]) = Base(LA) + w(K - lower bound) (4.2)

where w is the number of words per memory cell for the array LA. Observe that the time to
calculate LOC(LA[K]) is essentially the same for any value of K. Furthermore, given any subscript
K, one can locate and access the content of LA[K] without scanning any other element of LA.

Arrays, Records and Pointers 4.7

\Example 44

Consider the array AUTO in Example 4.1(b), which records the number of automobiles sold each
year from 1932 through 1984. Suppose AUTO appears in memory as pictured in Fig. 4.4, That 15,
Base(AUTO) = 200, and w = 4 words per memory cell for AUTO. Then

LOC(AUTO[1932]) = 200, LOC(AUTO[1933]) = 204, LOC(AUTO[1934]) = 208, ...

The address of the array element for the year K = 1965 can be obtained by using Eq. (4.2):

LOC(AUTO[1965]) = Base(AUTO) + w(1965 - lower bound)
= 200 + 4(1965 - 1932) = 332

Again we emphasize that the contents of this element can be obtained without scanning any
other element in array AUTO.

200)

201

|\ AuTO[1932)
202

203

204)
205

s » AUTO[1933)

207
208 i
209
210

211 |

\ AUTO[1934]

. =] L L e S I R P * i ol) o 0 tE o
o s PR H 'y ey I Yt i 0 T e : P o
s] -1 st Ty . P T i S i e W j.i ' l. ol vom e s L
. 2 a4 N P I A - e
_ & o T Fiy iy TheaTilem e fui: % yicl i e g T b r '
Tk * i e B it T, s, e ot H -y - Py AR 1 iwr ®TH '_".' ¥ e

There is a memory address for all the elements of an array. In the following pmgfmn. we can
see how an array limit value and an array element address are printed.

ginclude <stdioc.n>
void printarav(int x(]):
main()

4.8 Data Structures with C

T ; |
Ee int -3[15] : ' _
i for(int i = 0;i<15;i++)
i E g3 5
- ox[il=i;
" printaray(x);
T s e
void printaray(int x[])
{. '
for(int i =.0;i<15;i++)
{,
printf(*Value in the array %d\n”".x[i]):
} | '
}
“void printdetail (int x[])
{ |
for(int i = 0;i<15;i++)
{ LA ' by
printf(*Value. in the array %d and address is %16lu\n”,x[i],&x[i]);
1)

In the above program, the function ‘printaray’ is used to print values of each element in the
array ‘aray’. To print the value and address of all the elements and its address the printdetail
function is used.

Now that we know all the elements are integer type, the difference between address is 2.

All the elements in the array are placed 1in consecutive memory spaces. The memory addresses
can be printed using place holders % 16lu or %p.

Remark: A collection A of data elements is said to be indexed if any element of A, which we shall
call Ag, can be located and processed in a time that is independent of K. The above discussion
indicates that linear arrays can be indexed. This is very important property of linear arrays. In fact,
linked lists, which are covered in the next chapter, do not have this property.

4.5 TRAVERSING LINEAR ARRAYS

Let A be a collection of data elements stored in the memory of the computer. Suppose we want to
print the contents of each element of A or suppose we want to count the number of elements of A
with a given property. This can be accomplished by rraversing A, that is, by accessing and
processing (frequently called visiting) each element of A exactly once.

The following algorithm traverses a linear array LA. The simplicity of the algorithm comes
from the fact that LA is a linear structure. Other linear structures, such as linked lists, can also be
easily traversed. On the other hand, the traversal of nonlinear structures, such as trees and graphs,
is considerably more complicated.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4.10 Data Structures with C

Example 4.5

Consider the array AUTO in Example 4.1(b), which records the number of automobiles sold each
year from 1932 through 1984. Each of the following modules, which carry out the given operation,
involves traversing AUTO.

(a) Find the number NUM of years during which more than 300 automobiles were sold.

1. [Initialization step.] Set NUM := 0.
2. Repeat for K = 1932 to 1984:
If AUTO[K] > 300, then: Set NUM := NUM + 1.
[End of loop.]
3. Return.

(b) Print each year and the number of automobiles sold in that year.

1. Repeat for K = 1932 to 1984:
Write: K, AUTO[K].
[End of loop.]
2. Return.

(Observe that (a) requires an initialization step for the variable NUM before traversing the array AUTO,)

4.6 INSERTING AND DELETING

Let A be a collection of data elements in the memory of the computer. “Inserting” refers to the operation
of adding another element to the collection A, and “deleting” refers to the operation of removing one
of the elements from A. This section discusses inserting and deleting when A is a linear array.

Inserting an element at the “end” of a linear array can be easily done provided the memory
space allocated for the array is large enough to accommodate the additional element. On the other
hand, suppose we need to insert an element in the middle of the array. Then, on the average, half
of the elements must be moved downward to new locations to accommodate the new element and
keep the order of the other elements.

Similarly, deleting an element at the “end” of an array presents no difficulties, but deleting an

element somewhere in the middle of the array would require that each subsequent element be
moved one location upward in order to “fill up”™ the array.

Remark: Since linear arrays are usually pictured extending downward, as in Fig. 4.1, the term
“downward” refers to locations with larger subscripts, and the term “upward” refers to locations
with smaller subscripts.

Suppose TEST has been declared to be a 5-element array but data have been recorded only for
TEST[1], TEST[2] and TEST[3]. If X is the value of the next test, then one simply assigns
TEST[4] = X
to add X to the list. Similarly, if Y is the value of the subsequent test, then we simply assign
TEST[5] = Y
to add Y to the list. Now, however, we cannot add any new test scores to the list.

Arrays, Records and Pointers

4.11

2 Ei.lppnse HAHE is an B-eler_nent linear array, and suppose five names are in the array, as in Fig. 4.5(a).
" Observe that the names are listed alphabetically, and suppose we want to keep the array names alphabetical
- at all times. Suppose Ford is added to the array. Then Johnson, Smith and Wagner must each be moved
~downward one location, as in Fig. 4.5(b). Next suppose Taylor is added to the array; then Wagner must
“be moved, as in Fig. 4.5(c). Last, suppose Davis is removed from the array. Then the five names Ford,
‘Johnson, Smith, Taylor and Wagner must each be moved upward one location, as in Fig. 4.5(d). Clearly
such movement of data would be very expensive if thousands of names were in the array.

NAME NAME NAME
1 1 | Brown 1 | Brown 1
2 2 | Davis 2 | Davis | 2
3 | 3 | Ford 3 | Ford 3
4 | Si 4 | Johnson T 4 | Johnson : 4
5 | Wagner | 5 | Smith 5 | Smith ‘ S
6 | 6 | Wagner 6 | Taylor 6
7 | 7 7 | Wagner 7
8 8 | 8 8

(@) (b) (©) (@)

The following algorithm inserts a data element ITEM into the Kth position in a linear array LA
with N elements. The first four steps create space in LA by moving downward one location each
element from the Kth position on. We emphasize that these elements are moved in reverse order—
i.e., first LA[N], then LA[N - 1], ..., and last LA[K]; otherwise data might be erased. (See Solved
Problem 4.3) In more detail, we first set J := N and then, using J as a counter, decrease J each time
the loop is executed until J reaches K. The next step, Step 5, inserts ITEM into the array in the
space just created. Before the exit from the algorithm, the number N of elements in LA is increased

by 1 to account for the new element.

Algorithm 4.2: (Inserting into a Linear Array) INSERT (LA, N, K, ITEM)
Here LA is a linear array with N elements and K is a positive integer such that
K < N. This algorithm inserts an element ITEM into the Kth position in LA.
1. [Initialize counter.] Set J : = N.
2. Repeat Steps 3 and 4 while J 2 K.
. [Move Jth element downward.] Set LA[J + 1] := LA[J].
4 [Decrease counter.] Set J :=J - 1.
[End of Step 2 loop.] '
[Insert element.] Set LA[K] := ITEM
[Reset N.] Set N := N + 1.
Exit.

ol A TE

4.12 Data Structures with C

The following algorithm deletes the Kth element from a linear array LA and assigns it to a
variable ITEM.

Algorithm 4.3: (Deleting from a Linear Array) DELETE(LA, N, K, ITEM)
Here LA is a linear array with N elements and K is a positive integer such that
K £ N. This algorithm deletes the Kth element from LA.

1. Set ITEM := LA[K].
2. RepeatforJ=KtoN-1:
[Move J + Ist element upward.] Set LA[J] := LA]J + 1].
[End of loop.] |
3. [Reset the number N of elements in LA.] Set N: = N - 1,
4. Exit,

Remark: We emphasize that if many deletions and insertions are to be made in a collection of data
elements, then a linear array may not be the most efficient way of storing the data.
The following C program implements Algorithms 4.2 and 4.3:

#include <stdio.h>
#include <conio.h>
define UB 10

int array[UB]={21,2,43,14,-5,46,87,8};
int insert _item(int LAJ[], int N, int k, int item};
int delete_item(int LA[], int N, int k);

void main/()

{

int ITEM, LOC;
int 1, size=8;
int choice;
clracrl);

printf{“aArray: ");
for(i=0;1<size;1i++) |
printf(*%d *,arrayl[i]);

printf (*\n\nEnter your choice: \n\nl. Insert an element\n2. Delete an
element\n) - i
scanf (*%d”, &choice);

if{choice!=1 && choice !=2)
{

printf{*\nInvalid Choice");
getch();

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

414 Data Structures with C

int 3=N;

while(j>=k-1)

{
LA[J+1]=LA[]];
3=

}

LA[k-1l]=item;

return(N+1) ;

}

int delete_item(int LA[], int N, int k)
{
int j, item;
item=LA[k-1]);
printf("\nItem %d deleted from location %d\n”,item,k);
for(j=k-1;3<N-=1;3j++)
LA[jl1=LA[j+1];
return(N-1) ;
}

Output (Insertion):
Array: 21 2 43 14 -5 46 87 8

Enter vyour choice:

1. Insert an element
2. Delete an element
1

Enter the element to be inserted in the array: 99
Enter the location where element 99 is to be inserted: 4
Modified array: 21 2 43 99 14 -5 46 87 8

Output (Deletion)

Array: 21 2 43 14 -5 46 87 B8
Enter your choice:

: PR Insert an element
2. Delete an element
2

Enter the location from where element is to be deleted: 6
Item 46 deleted from location 6
Modified array: 21 2 43 14 -5 87 8

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Arrays, Records and Pointers 4.19

Remark: Some programmers use a bubble sort algorithm that contains a 1-bit variable FLAG (or a
logical vanable FLLAG) to signal when no interchange takes place during a pass. If FLAG = 0 after
any pass, then the list is already sorted and there is no need to continue. This may cut down on the
number of passes. However. when using such a flag, one must initialize, change and test the
variable FLAG during each pass. Hence the use of the flag is efficient only when the list originally
1s “almost” in sorted order.

4.8 SEARCHING; LINEAR SEARCH

Let DATA be a collection of data elements in memory, and suppose a specific ITEM of information
1s given. Searching refers to the operation of finding the location LOC of ITEM in DATA, or
printing some message that ITEM does not appear there. The search is said to be successful if
ITEM does appear in DATA and unsuccessful otherwise,

Frequently, one may want to add the element ITEM to DATA after an unsuccessful search for
ITEM in DATA. One then uses a search and insertion algorithm, rather than simply a search
algorithm; such search and msertion algorithms are discussed in the problem sections.

There are many different searching algorithms. The algorithm that one chooses generally depends
on the way the information in DATA is organized. Searching is discussed in detail in Chapter 9.
This section discusses a simple algorithm called linear search, and the next section discusses the
well-known algorithm called binary search.

The complexity of searching algorithms is measured in terms of the number fin) of comparisons
required to find ITEM in DATA where DATA contains n elements. We shall show that linear
search is a linear time algorithm, but that binary search is a much more efficient algorithm,
proportional in time to log, n. On the other hand. we also discuss the drawback of relying only on
the binary search algorithm.

Linear Search

Suppose DATA 1s a linear array with n elements. Given no other information about DATA, the
most intuitive way to search for a given ITEM in DATA is to compare ITEM with each element of
DATA one by one. That is, first we test whether DATA[1] = ITEM, and then we test whether
DATA[2] = ITEM, and so on. This method, which traverses DATA sequentially to locate ITEM, is
called linear search or sequential search.

To simplify the matter, we first assign ITEM to DATA[N + 1], the position following the last
element of DATA. Then the outcome

LOC =N + 1

where LOC denotes the location where ITEM first occurs in DATA, signifies the search 1s
unsuccessful, The purpose of this initial assignment is to avoid repeatedly testing whether or not
we have reached the end of the array DATA. This way, the search must eventually “succeed.”

A formal presentation of linear search is shown in Algorithm 4.5.
Observe that Step 1 guarantees that the loop in Step 3 must terminate. Without Step 1 (see

Algorithm 2.4), the Repeat statement in Step 3 must be replaced by the following statement, which
involves two comparisons, not one:
Repeat while LOC £ N and DATA[LOC] # ITEM:

On the other hand, in order to use Step 1, one must guarantee that there s an unused memory

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

426 Data Structures with C

(b) Suppose ITEM = 85. The binary search for ITEM is pictured in Fig. 4.8. Here BEG, END and
~ MID will have the following successive values:

1. Again irlﬂ:ially BEG = 1, END = 13, MID = 7 and DATA[MID] = 55.
2. Since 85 > 55, BEG has its value changed by BEG = MID + 1 = 8. Hence

MID = INT[(& +13)/2] =10 and so DATA[MID] = 77
3. Since 85 > 77, BEG has its value changed by BEG = MID + 1 = 11. Hence
: MID = INT[(11 + 13)/2] =12 and so DATA[MID] = 88
4. Since 85 < 88, END has its value changed by END = MID - 1 = 11, Hence
| MID = INT[(11 +11)/2] =11 and so DATA[MID] =

(Observe that now BEG = END = MID = 11.)
Since 85 > 80, BEG has its value changed by BEG = MID + 1 = 12. But now BEG > END. Hern:e ITEH
does not belong to DATA. o

(1) @) 22, 30, 33, 40, 44_,@30. 66, 77, 80, 88,(89)
(2) 11, 22, 30, 33, 40, 44, 55,(60)66.[77) 80, 88,(39)
(3) 11, 22, 30, 33, 40, 44, 55, 60, 66, 77.(80)
(4) 11, 22, 30, 33, 40, 44, 55, 60, 66, 77,(80) 88, 99 [Unsuccessful]

(PG &8] sinary Searon for ITEM = 85

Complexity of the Binary Search Algorithm

The complexity 1s measured by the number fln) of comparisons to locate ITEM in DATA where
DATA contains n elements. Observe that each comparison reduces the sample size in half. Hence
we require at most fin) comparisons to locate ITEM where

20 5 n or equivalently fin) = |_l-::tg2 nl+1

That is, the running time for the worst case is approximately equal to log, n. One can also show that
the running time for the average case is approximately equal to the running time for the worst case.

Suppose DATA contams 1 0{}0 000 element.s Dbserve that
= 1024 > 1000 and hence 220 > 10002 = 1 000 000

Accordingly, using the binary search algorithm, one requires only about 20 comparisons to find
the location of an item in a data array with 1 000 000 elements.

Limitations of the Binary Search Algorithm

Since the binary search algorithm is very efficient (e.g., it requires only about 20 comparisons with
an initial list of 1 000 000 elements), why would one want to use any other search algorithm?

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4,38 Data Structures with C

#include <stdio.h>
#include <conio.h>

void main()
£

int A[6];

int B[6];

int C[6];

int i,flag=0;
clrscr();

for(i=0;1i<6;i4++)
Ali]l=B[i]=0;

ﬁt1]=1:
Al2]=4;
Al5]1=-7;

B[0]=-14;
B(1]=10;
B[2]=6;
B[3)=5;
B(4]=3;

printf (“Polynomial 1 = ");
for(i=5;i>=0;i-) |
{
if(A[i)!=0 && 1i>0)
{
printf("%d. (x)%d *,A[i],i);
flag=1; e '
)

1£(i>0 &8 A[i-1150. && flag==1)
printf(*+ *);

iE(A[i]1=0 && i==0)
printf(*%d”,A[i],1):
} i

printf(*\n\n”");
flag=0;

printf (“Polynomial 2 = *);

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4.42 Data Structures with C

PA A
o o - 0; 2
P 1‘& : 23] 1 > < 1" record, Length = 4
o2 [&2 = 2> ;
s (75 b€
. 4
.<
. E—— 5 e
2" record, Length = 2
g N : : j
4| APAN)
TN

Fig. 4.19 Pointer Array PA, with Pointers Stored in A

Selecting the (i + 1)™ record can be done by accessing PA[i] and following the pointer found there
to the entry of A in which the (i + 1)" record begins. A[PA[i]] is the name assigned to the base of this
record We should always ensure that the selection process is done first PA followed by A. where each
array takes a fixed time and hence the (i + 1)™ record is selected. Traversing through the records
becomes easy by making use of PA, which can be seen in the following program.

traverse (A, PA,N)

/* Traverses through the N records stored in A which are pointed to by

indices stored in the pointer array PA */

int A[],PA[],N;

{

inti;

for (i=0; i<N; i++)

process(A,PA,1i);

}

When pointer arrays are used it leads to additional storage but gives a solution for the variable-
length records. All these records stored in an array have related pointers which are easy to use on
violating language typing constraints.

Pointer Arrays

The two space-efficient data structures in Fig. 4.20 can be easily modified so that the individual
groups can be indexed. This is accomplished by using a pointer array (here, GROUP) which
contains the locations of the different groups or, more specifically, the locations of the first
elements in the different groups. Figure 4.21 shows how Fig. 4.20(a) is modified. Observe that
GROUPIL] and GROUP[L + 1] = 1 contain, respectively, the first and last elements in group L.
(Observe that GROUP[S5] points to the sentinel of the list and that GROUP[5] - 1 gives us the

location of the last element in Group 4.)

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4.52 Data Structures with C

Analogously, the age of the father of the sixth newborn may be referenced by writing
Newborn.Father.Age[6] or simply Father.Age[6]

(c) Consider the record structure Student in Example 4.18. Since Student is declared to be a file
with 20 students, all items automatically become 20-element arrays. Furthermore, Test
becomes a two-dimensional array. In particular, the second test of the sixth student may be
referenced by writing

Student.Test[6, 2] or simply Test[6,2]

The order of the subscripts corresponds to the order of the qualifying identifiers. For example,
Test([3, 1]

does not refer to the third test of the first student, but to the first test of the third student.

Remark: Texts sometimes use functional notation instead of the dot notation to denote qualifying
identifiers. For example, one writes

Age (Father (Newborn)) instead of Newborn.Father.Age
and

First (Name(Student([8])) instead of Student .Name.First[(8]

Observe that the order of the qualifying identifiers in the functional notation is the reverse of the
order in the dot notation.

4.15 REPRESENTATION OF RECORDS IN MEMORY; PARALLEL ARRAYS

Since records may contain nonhomogeneous data, the elements of a record cannot be stored in an array.
C language allows the storage of such nonhomogeneous data records with the help of structures.

Example 4.23
Consider the record structure Newborn in Example 4.20. One can store such a record in C by the
following declaration, which defines a data aggregate called a structure:

struct NEWBORN

{
char NAME([20];
char SEXI[1];

struct BIRTHDAY
.

int MONTH;
int DAY;
int YEAR;
}B;
struct FATHER
{
char NAME[20];
int AGE;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4.56 Dala Structures with C

e e 426 «:%"L;ﬁfﬁu -
(a) Suppose
1 -2 3 .
A=(O 4 5) and B.(z e 1)

4 & B 1+3 240 3+(-6)) (4 -2 -3
*P=lo+2 4+4(-3) 5+1 JTl2 1 6

2o 31 3:(=2) 3-3 (3 6 9
“13:0 34 35,70 12 15
(b) Suppose U = (1, -3, 4, 5), V= (2, -3, -6, 0) and W = (3, -5, 2, -1). Then:

U-Vae1-2+4(-3) - (-3)+4-(-6)+5-0=2+9-246+0=-13
U- W=13+(-3) (-5)+4-2+5-(-1)=3+15+8-5=21

(C) Suppose
1 3 2 0 4
A=(2 4) and »‘5‘1’-[3 5 6)

The product matrix AB is defined and is a 2 X 3 matrix. The elements in the first row of AB
are obtained, respectively, by multiplying the first row of A by each of the columns of B:

G z](g g -ﬁ4)_(1-2+3-3 1-0+3-2 1-(-4)+3-5]=(11 6 14)

Then:

Similarly, the elements in the second row of AB are obtained, respectively, by multiplying
the second row of A by each of the columns of 8:

1 3)/2 0 %) (1 6 14 (11 6 14
2°4)\3 2 6)7 \2-2+44-3 2-0+4-2 2-(-4)+4-6) (16 8 16
11 6 14)

That 15, AB = (16 3 16

The following algorithm finds the product AB of matrices A and B, which are stored as two-
dimensional arrays. (Algorithms for matrix addition and matrix scalar multiplication, which are
very similar to algorithms for vector addition and scalar multiplication, are left as exercises for the
reader.)

Algorithm 4.8: (Matrix Muluplication) MATMUL(A, B, C, M, P, N)
lLet A be an M X P matnx array, and let B be a P X N matnx array. This
algorithm stores the product of A and B in an M X N matnix array C.

I. Repeat Steps 2todtorl =1 to M:
2 Repeat Steps 3 and 4 for J = 1 to N:

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

4.60 Data Structures with C

. a(f - h)
d(g - e)

(a + b)h

(c - a)(e + f)
. (b -d)(g+h)

*-JH'IU“-I‘-"-UJ

Certain versions of the programming language BASIC have matrix operations built into the
language. Specifically, the following are valid BASIC statements where A and B are two-dimensional
arrays that have appropriate dimensions and K is a scalar:

MATC=A+B
MAT D = (K)*A
MAT E = A*B

Each statement begins with the keyword MAT, which indicates that matrix operations will be
performed. Thus C will be the matrix sum of A and B, D will be the scalar product of the matrix A
by the scalar K, and E will be the matrix product of A and B.

4.17 SPARSE MATRICES

Matrices with a relatively high proportion of zero entries are called sparse matrices. Two general
types of n-square sparse matrices, which occur in various applications, are pictured in Fig. 4.26. (It
IS sometimes customary to omit blocks of zeros in a matrix as in Fig. 4.26.) The first matrix, where
all entries above the main diagonal are zero or, equivalently, where nonzero entries can only occur
on or below the main diagonal, is called a (lower) triangular matrix. The second matrix, where
nonzero entries can only occur on the diagonal or on elements immediately above or below the
diagonal, 1s called a tridiagonal matrix.

(6 -3 :
- ,, 1 4 3
s s g -3 6
4 0 6 2 4 =7
-7 8 -1 3 : = .
5 -2 0 2 -8 ° -5 6
\ 3 -1,4
(a) Triangular matrix (b) Tridiagonal matrix
Fig. 4.26

The natural method of representing matrices in memory as two-dimensional arrays may not be
suitable for sparse matrices. That is, one may save space by storing only those entries which may

be nonzero. This is illustrated for triangular matrices in the following example. Other cases will be
discussed in the solved problems.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

BROKER POINT
1| Bond ?
2. Kelly 3
a[Fn_| [7]
4 | Nelson 9
——— el

10
11

N——p 12
13
14
15
16

e i7

Linked Lists

CUSTOMER LINK

Vito

L‘
A

Hunter
Katz

S

—
&
'

Evans

@ o0 ~N O O -

Grant

BRENELAD

Rogers
Teller

*d
o o

Jones

-4
~J

\ |

McBride
Weston

Af fel=] |

Scott

e

Accordingly, Bond's list of customers, as indicated by the arrows, consists of
Grant, Scott, Vito, Katz

Similarly, Kelly’s list consists of

and Nelson's list consists of

Hunter, McBride, Evans

Teller, Jones, Adams, Rogers, Weston

Hall’s list is the null list, since the null pointer 0 appears in POINT[3].

5.7

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Linked Lisis 5.11

PTR=LINK|[PTR] ;
}

PTR=START;
~printf (*\n\nLIST After Traversal: \n”");
while (PTR!=-1)
{
printf (*%d\t”,LIST[PTR]);
PTR=LINK|[PTR];
}
getch() ;
'}

void PROCESS(int P1)

{
LIST[P1]=LIST([P1]*10;

}

Output:

Initial LIST:

2 55 22 19 5 50 87 79 33 99
29 8 ' '
,LIST After Traversal: oy :
20 550 220 190 50 500 870 790 330 - .. .990
290 80

Remark: In the above program, the PROCESS operation multiplies each element in the list with 10.

The follovnng procedure ﬁnds the number NUM of elements in a linked list.
Procedure: COUNT(INFO, LINK, START, NUM)
. Set NUM : = 0. [Initializes counter.]
. Set PTR : = START. [Initializes pointer.]
. Repeat Steps 4 and 5 while PTR # NULL.
Set NUM : = NUM + 1. [Increases NUM by 1]
Set PTR : = LINK[PTR]. [Updates pointer.]

[End of Step 3 loop.]
6. Return.

!JI:F'-WNH

Observe that the procedure traverses the linked list in order to count the number of elements;
hence the procedure is very similar to the above traversing algorithm, Algorithm 5.1. Here,
however, we require an initialization step for the variable NUM before traversing the list. In other
words, the procedure could have been written as follows:

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

int L
while(P!=-1)
{
1f (I>INFO[P])
P=LINK[P];
else 1f (I==INFO[P]) %
{
L=P;
returni(lL) ;

}
else

{
L=-1;
return(L) ;

}

}
L=-1:
return(L);
}

Output:
LIST:

2 5 B 19 22 29
55 79 87 99
Enter the ITEM to be -searched: 99

ITEM 99 present at INDEX location 14 in the LIST

5.6 MEMORY ALLOCATION; GARBAGE COLLECTION

Linked Lists

33

5.17

20

The maintenance of linked lists in memory assumes the possibility of inserting new nodes into the
lists and hence requires some mechanism which provides unused memory space for the new nodes.
Analogously, some mechanism 1s required whereby the memory space of deleted nodes becomes
available for future use. These matters are discussed in this section, while the general discussion of
the inserting and deleting of nodes is postponed until later sections.

Together with the linked lists in memory, a special list 1s maintained which consists of unused

memory cells. This list, which has its own pointer, is called the list of available space or the free-
storage list or the free pool.

Suppose our linked lists are implemented by parallel arrays as described in the preceding

LIST(INFO, LINK, START, AVAIL)

sections, and suppose insertions and deletions are to be performed on our linked lists. Then the
unused memory cells in the arrays will also be linked together to form a linked list using AVAIL
as its list pointer variable. (Hence this free-storage list will also be called the AVAIL list.) Such a
data structure will frequently be denoted by writing

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Linked Lists 5.21

INFO INFO
START | © 1 2
" 2 3
3 4
4| 5
AVAIL | 1 / el S
6 7
7 8
8 9
9 10
10 0
Fig. 5.14

Garbage Collection

Suppose some memory space becomes reusable because a node is deleted from a list or an entire list
1s deleted from a program. Clearly, we want the space to be available for future use. One way to bring
this about 1s to immediately reinsert the space into the free-storage list. This 1s what we will do when
we implement linked lists by means of linear arrays. However, this method may be too time-consuming
for the operating system of a computer, which may choose an alternative method, as follows.

The operating system of a computer may periodically collect all the deleted space onto the free-
storage list. Any technique which does this collection is called garbage collection. Garbage collection
usually takes place in two steps. First the computer runs through all lists, tagging those cells which
are currently in use, and then the computer runs through the memory, collecting all untagged space
onto the free-storage list. The garbage collection may take place when there 1s only some minimum
amount of space or no space at all left in the free-storage list, or when the CPU is idle and has time
to do the collection. Generally speaking, the garbage collection i1s invisible to the programmer.
Any further discussion about this topic of garbage collection lies beyond the scope of this text.

Overflow and Underflow

Sometimes new data are to be inserted into a data structure but there 1s no available space, i.e., the
free-storage list is empty. This situation is usually called overflow. The programmer may handle
overflow by printing the message OVERFLOW. In such a case, the programmer may then modify
the program by adding space to the underlying arrays. Observe that overflow will occur with our
linked lists when AVAIL = NULL and there is an insertion.

Analogously, the term underflow refers to the situation where one wants to delete data from a
data structure that is empty. The programmer may handle underflow by printing the message
UNDERFLOW. Observe that underflow will occur with our linked lists when START = NULL
and there is a deletion.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Linked Lists 5.25

location of the new node, this step can be implemented by the pair of assignments (in this order)
NEW := AVAIL, AVAIL := LINK[AVAIL]
(¢) Copying new information into the new node. In other words,
INFO[NEW] := ITEM
The schematic diagram of the latter two steps is pictured in Fig. 5.18.

NEW
L =
AVAIL Free-storage list
- L B
Fig. 5.18

Inserting at the Beginning of a List

Suppose our linked list is not necessarily sorted and there is no reason to insert a new node in any
special place in the list. Then the easiest place to insert the node is at the beginning of the list. An
algorithm that does so follows.

Algorithm 5.4: INSFIRST(INFO, LINK, START, AVAIL, ITEM)

This algorithm inserts ITEM as the first node in the hst.

. [OVERFLOW?] If AVAIL = NULL, then: Write: OVERFLOW, and Exit.

[Remove first node from AVAIL list.]
Set NEW := AVAIL and AVAIL := LINK[AVAIL].
Set INFO[NEW] := ITEM. [Copies new data mto new node|
Set LINKINEW] := START. [New node now points to original first node. |
Set START := NEW. [Changes START so it points to the new node.]
Exit.

I

Sl o

Steps 1 to 3 have already been discussed, and the schematic diagram of Steps 2 and 3 appears in
Fig. 5.18. The schematic diagram of Steps 4 and 5 appears in Fig. 5.19.

[_; |

ITEM

Fig. 5.19 Insertion at the Beginning of a List

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

3. SAVE = 5 and PTR = LINK[5] = 3.
4. Steps 5 and 6 are repeated as follows:

(a) BED[3] = Dean < Jones, so SAVE = 3 and PTR = LINK[3] = 11.
- (b) BED[11] = Fields < Jones, so SAVE = 11 and PTR = LINK[11] = 8.
(c) BED[8] = Green < Jones, so SAVE = 8 and PTR = LINK[8] = 1.

- (b) INSLOC(BED, LINK, START, AVAIL, LOC, ITEM) [Here LOC = 8.]

. Since AVAIL # NULL, control is transferred to Step 2.
. NEW = 10 and AVAIL = LINK[10] = 2.
. BED[10] = Jones.

. Since LOC # NULL we have:

- W N =

7

(d) Since BED[1] =

Kirk > Jones, we have:

LOC = SAVE = 8 and Return.

LINK[10] = LINK[8] = 1 and LINK[8] = NEW = 10.

Exit.

Linked Lists

5.29

Figure 5.22 shows the data structure after Jones is added to the patient list. \'le emphasize that

only three pointers have been changed, AVAIL, LINK[10] and LINK[8].

AVAIL

BED
START E ~ 1 K;rlr. Bl
— 2
3 | Dean
| 4 Maxwell
“t—» 5 | Adams
2 J/ 6
7 | Lane
8 | Green
9 Samuels
10 Jones
11 Fields
12 Nelson

LINK

7

6

1

12

3

0

4

10

The following is the C implementation of Algorithm 5.7 to insert an element into a sorted list:

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Linked Lists 5.33

Figure 5.23 does not take into account the fact that, when a node N is deleted from our list, we will
immediately return its memory space to the AVAIL list. Specifically, for easier processing, it will
be returned to the beginning of the AVAIL list. Thus a more exact schematic diagram of such a
deletion is the one 1n Fig. 5.24. Observe that three pointer fields are changed as follows:

1. The nextpointer field of node A now points to node B, where node N previously pointed.

2. The nextpointer field of N now points to the original first node in the free pool, where

AVAIL previously pointed.
3. AVAIL now points to the deleted node N.

START Data list
| Node A j Node NL Node B
.+—D- - (v-ll* - - -—— - o
AVAIL)
H'\
t"w.________(‘ & . e e, # % T — Lo

Free-storage lis!

Fig. 5.24

There are also two special cases. If the deleted node N is the first node in the list, then START will
point tc node B; and 1f the deleted node N is the last node in the hst, then node A will contain the
NULL pointer.

mmpz;f 5.6

(a} Consider F1g. 5.22, the list of patients in the hospital ward. Suppose Green is discharged, s0
that BED[8] 15 now empty. Then, in order to maintain the linked list, the following three
changes in the pointer fields must be executed:

LINK[11] = 10 LINK{8] = 2 AVAIL = 8

By the first change, Felds, who onginally preceded Green, now points to Jones, who
originally followed Green. The second and third changes add the new empty bed to the
AVAIL list. We emphasize that, before making the deletion, we had to find the node
BED[11], which originally pointed to the deleted node BED|[8I,

(b) Consider Fig. 5.13, the list of brokers and their customers., Suppose Teller, the first customer
of Nelson, 1s deleted from the list of customers. Then, 1n order to maintain the linked lists,
the following three changes in the pointer felds must be executed:

POINT[4] = 10 LINK[9] = 11 AVAIL =

By the first change, Nelson now points toe his onginal second customer, Jones. The second
and third changes add the new empty node to the AVAIL {ist.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Linked Lists 5.41

3. If INFO[PTR] = ITEM, then:
Set LOC := PTR and LOCP := SAVE.
Else:
Set LOC := NULL and LOCP := SAVE.
[End of If structure.]
4. Exit.

Observe the simplicity of this procedure compared with Procedure 5.9. Here we did not have
to consider the special case when ITEM appears in the first node, and here we can perform at
the same time the two tests which control the loop.

(c) Algorithm 5.10 deletes the first node N which contains ITEM when LIST is an ordinary linked
list. The following is such an algorithm when LIST is a circular header list.

Algorithm 5.14: DELLOCHL(INFO, LINK, START, AVAIL, ITEM)

1.

2.
3.
4.

D

[Use Procedure 5.15 to find the location of N and its preceding
node.]

Call FINDBHL(INFO, LINK, START, ITEM, LOC, LOCP).

If LOC = NULL, then: Write: ITEM not in list, and Exit.

Set LINK[LOCP] := LINK[LOC]. [Deletes node.]

[Return deleted node to the AVAIL list.]

Set LINK[LOC]:= AVAIL and AVAIL:= LOC.

Exit.

Again we did not have to consider the special case when ITEM appears in the first node,
as we did in Algorithm 5.10.

Remark: There are two other variations of linked lists which sometimes appear in the literature:
l. A linked list whose last node points back to the first node instead of containing the null
pointer, called a circular list
2. A linked list which contains both a special header node at the beginning of the list and a
special trailer node at the end of the list
Figure 5.32 contains schematic diagrams of these lists.

START

START

Header
node

(a) Circular linked list

Trailer
node

[T~ [~ T—{ T+

(b) Linked list with header and trailer nodes

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Linked Lists 5.45

Enter the ITEM to be deleted: 79
Modified LIST:

55 22 19 5 50 87 33 99
29 8
Polynomials

Header linked lists are frequently used for maintaining polynomials in memory. The header
node plays an important part in this representation, since it is needed to represent the zero
polynomial. This representation of polynomials will be presented in the context of a specific
example.

Example 5.20
Let p(x) denote the following polynomial in one variable (containing four nonzero terms):
p(x) = 2x® - 5x" - 3x* + 4

Then p(x) may be represented by the header list pictured in Fig. 5.35(a), where each node
corresponds to a nonzero term of p(x). Specifically, the information part of the node is divided
into two fields representing, respectively, the coefficient and the exponent of the corresponding
term, and the nodes are linked according to decreasing degree.

Observe that the list pointer variable POLY points to the header node, whose exponent field
is assigned a negative number, in this case -1. Here the array representation of the list will require
three linear arrays, which we will call COEF, EXP and LINK. One such representation appears in

Fig. 5.35(b).

Representation of Polynomials Using Linked Lists

We can represent a polynomial using array or a linked hList. This is done by simply storing the
coefficient and exponent of all the terms. The linked list representation is easy for operations like
polynomial addition or subtraction, and polynomial multiplication. We should also keep in mind
that in a polynomial, all the terms might not be present, especially for polynomials with a higher
order. Look at the following example.

8¢ +5:%4+ 2%+ © + 1'%+ 17x

This 13" order polynomial does not have all the 14 terms (including the constant term). Thus, it is
very easy to represent the polynomial with the help of a linked list structure. Here every node can retain
information pertaining to a single term of the polynomial. All the nodes store three things:

e variable x

e exponent

e coefficient for each term

Whatever be the equation, it does not matter if the polynomial i1s in x or y. This 1s a very
important information that needs to be kept in mind when performing operations on polynomials.
Thus it is better if we define a node structure which holds 2 integers— exp and coff.

Let us compare this representation with an array structure storing the same polynomials. In

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Linked Lists 5.49

“int LOCP,LOC;

int START, AVAIL;
int SRCHHL(int);
void FINDBHL(int) ;
void DELLOCHL(int);

void main()

{
int PTR, ITEM;

clrscr();

INFO[0]=22;INFO[2]=5;INFO[3]=19;INFO[5]=87;INFO[7]=29;INFO[8]=79;
INFO[9]=33;INFO[13]=50;INFO[14]=8;INFO[16]=55;INFO[18]=99;

LINK[O0]=3;LINK[1]=17;LINK[2]=13;LINK[3]=2;LINK[4]=12;LINK[5]=8; _
LINK[6]=-1;LINK[7]=14;LINK[8]=9;LINK([9]=18;LINK[10]=6;LINK[11]=16;
LINK(12]=10;LINK[13]=5;LINK([14]=11;LINK([15]=1;LINK[17]=19;LINK[18]=7;
LINK([19]=4;

START=11;
AVAIL=15;

printf (“LIST: \n\n");
PTR=START;
printf (*%d\t”, INFO[PTR]);
PTR=LINK([PTR] ;
while (PTR!=START)
{
printf(“s$d\t”, INFO[PTR]);
PTR=LINK[PTR] ;

}

printf (*\n\nTraversing the LIST and applying PROCESS to each
node. .\n\n”") ; | -
PTR=START;
printf (“%d\t”, INFO[PTR] *10);
PTR=LINK[PTR];
while (PTR!=START)
{
printf (“%d\t”, INFO[PTR]*10) ;
. PTR=LINK[PTR];
)
“printf(“\n\nEnter the ITEM to be searched: *);
scanf (“%d4d” ,&ITEM) ;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

5.66 Data Structures with C

Generally, on giving the address of a size 2k node which needs to be returned, there is a change
in its (k + 1)™ bit from 1 to 0 or vice versa and the output is its buddy’s address. We can come to

know if a node is in use by making use of the tag field.

Suppose m is 6 and requests are made for nodes of size 8, 16, 4, and 6. We will see hw ﬂw“
buddy system responds. . i

e — ' -
. i
= 5
— —
i
.
&] '

A (6]

1

{ }

A 3] Al4] A (5]

A[2] . A[3] A[4) %A

(a) On making a sequence of requests for nodes with size 8, 16, 4, 6

78 11121516 31 32 39 40 47 48 63

A (2] A3] A4
(b) 0n returning a node of length 16

Sequence of Memory Configurations

Figure 5.43(a) shows the sequence of memory configurations. If the node of length 16 is returned
the configuration becomes as shown in Fig. 5.43(b).

Al4] has two nodes and is the head of the list, the nodes are of length 16 each. The node which
1s released had a length 16 which starts at the address 16 having a node f length 16 which starts at
the address O as its buddy. It cannot merge together as it is not free. It also can’t merge with the
node having a length 4 beginning with the address 12 because it is not its buddy.

Buddies are usually the successor nodes of the same parent. Hence we can come to a conclusion
that [12, I5] and [16, 31| cannot be considered as buddies even though they have an adjacent
memory space.And hence we can also say that they cannot be merged either.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

Stack of Stack of Stack of
dishes pennies folded towels

— T
kllI_____I' - -

- -

/

5

/

"I-|||..|..lI
Ih.-‘.--

)

i1 1 %

Fig. 6.2 Queue Waiting for a Bus

6.2 STACKS

A stack is a list of elements in which an element may be inserted or deleted only at one end, called
the rop of the stack. This means, in particular, that elements are removed from a stack in the
reverse order of that in which they were inserted into the stack.

Special terminology is used for two basic operations associated with stacks:

(a) *“Push” is the term used to insert an element into a stack.
(b) “Pop” is the term used to delete an element from a stack.

We emphasize that these terms are used only with stacks, not with other data structures.

Suppose the following 6 elements are pushed, in order, onto an empty stack:
AAA, BBB, CCC, DDD, EEE, FFF

Figure 6.3 shows three ways of picturing such a stack. For notational convenience, we will
frequently designate the stack by writing:

STACK: AAA, BBB, CCC, DDD, EEE, FFF

The implication is that the right-most element is the top element. We emphasize that, regardless
of the way a stack is described, its underlying property is that insertions and deletions can occur
only at the top of the stack. This means EEE cannot be deleted before FFF is deleted, DDD cannot
be deleted before EEE and FFF are deleted, and so on. Consequently, the elements may be popped
from the stack only in the reverse order of that in which they were pushed onto the stack.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

6.6 Data Structures with C

tdefine Max 15
#include <stdlib.h>
void push({int newstack[], int *top, int wval)
{
1f(*top < Max)

{
*top = *top + 1;

newstack[*top] = val;

}

else

{

printf{(*"No value can be pushed as stack 1s full\n");
exit (0} ;

}
}
void pop(int newstack[], int *top, int * wval)

{
if(*top >= 0)

{
*val
*top

}

else

{
printf(*No wvalue can be popped as a stack is empty\n®);

exi1t(0);
}
}
void main()
{
int newstack[MAX];
int top = =-1;
int n,val;
do

{
do

{
printf{"The element to be pushed is\n");

scanf (“%d”, &val) ;

push (newstack, &top,val);

printf("To continue enter 1\n”");

scanf (“%d”,b &n) ;

} while(n == 1);

printf {“*To pop an element enter 1\n");
scanf (“%d4d”, &n) ;

while(n == 1)

{

newstacki*topl:
*top - 1;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

6.10 Data Structures with C

with the need to maintain the MAXSTK variable and consequently on the checking of OVERFLOW
of the linked stack during a push operation.

Procedure 6.3: PUSH_LINKSTACK(INFO, LINK, TOP, AVAIL, ITEM)
This procedure pushes an ITEM into a linked stack

1. [Available space?] If AVAIL = NULL, then Write
OVERFLOW and Exit

2. [Remove first node from AVAIL list] -

Set NEW := AVAIL and AVAIL := LINK[AVAIL].
3. Set INFO[NEW] := ITEM [Copies ITEM into new node]
4. Set LINK[NEW] := TOP [New node points to the original top node in
the stack]

5. Set TOP = NEW [Reset TOP to point to the new node at the top of
the stack] i oy

6. Exit.

Procedure 6.4: POP_LINKSTACK(INFO, LINK, TOP, AVAIL, ITEM)
This procedure deletes the top element of a linked stack and assigns 1t to the
variable ITEM

1. [Stack has an item to be removed?]

I[F TOP = NULL then Write: UNDERFLOW and Exit.
2. Set ITEM := INFO[TOP] [Copies the top element of stack into ITEM |
3. Set TEMP = TOP and TOP = LINK|[TOP]

|[Remember the old value of the TOP pointer in TEMP
and reset TOP to point to the next element in the stack]

4. [Return deleted node to the AVAIL list]
Set LINK[TEMP] = AVAIL and AVAIL = TEMP.
J. Exit.

However, the condition TOP = NULL may be retained in the pop procedure to prevent deletion
from an empty linked stack and the condition AVAIL = NULL to check for available space in the
free-storage list.

Cunsrder the linked stack shnwn in Flg 6.7, the snapshots of the stack structure on execution of
the following operations are shown in Fig. 6.10:

(i) Push BBB (ii) Pop (iii) Pop (iv) Push MMM

Original linked stack:

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

6.14 Data Structures with C

to be a success which is shown by returning true. If the heap is full, we report that the push failed
by returning false. It is then the calling function’s responsibility to detect and respond to an
overflow.

Pop Stack
The data at the top of the stack is returned by the Pop stack operation. The node is then deleted

and recycled after adjusting the count and subtracting it by 1, the function returns to the caller.
Note the way underflow is reported. In statement ‘dataOutPtr = NULL’, we set the data pointer to
NULL. If the stack is empty, when we return the data pointer in statement ‘return dataOutPtr’ as
NULL. The code is shown below:

Program 6.5

Pop Stack: This function is used to pop an item on on top of stack.STACK is a pointer to a
stack. The program is used for returning a pointer to the user’'s data when it 1s successful. It
returns a NULL when there i1s an underflow.

void* popStack (STACK* newstack)

{
void* dataOutPntr:

STACK_NODE* temp;

1f (newstack->count == ()
dataOQutPntr = NULL;

else

temp = newstack->top;

dataOutPntr = newstack->top->dataPntr;
newstack->top = newstack->top->link;
free(temp) ;

(newstack->count)--;

}
return dataOQutPntr

}

In this case, two local pointers are required—one for the data pointer to be returned to the
caller, and one that is used to free the deleted node. Its only concern is to ensure that is follows the
procedure to keep a track of when the last node is deleted, thus resulting in an empty stack. There
1s no special logic which is made use of, except that an automatic creation of an empty stack since
the last node has a null pointer, which on assigning to the top shows that the stack is empty.

Because a null pointer is false and a pointer with an address is true, we don’t need a separate
success flag—we just return the pointer with the address allocated by the new function. If memory
was allocated successfully, it contains an address, which is true. If the allocation failed, it contains
a null pointer, which is false.

Note that it takes two levels of indirection to access the link field of the top node.

On deleting a node from the stack, the pop stack releases its memory.

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

6.18 Data Siructures with C

int TOP, AVAIL;
volid PUSH{iint):
int POP(void);

volid mainf()

{

int 1,num,A,B,RESULT;
clrscr():

LINK[O]=3;LINK[1]=17;LINK[2]=13;LINK[3]=2;LINK[4]=12;LINK[5]=8;
LINK[6]=11;LINK[7])=14;LINK[8]=9;LINK[S9]=18;LINK[10]=6;LINK[11]=16;
LINK[12i=10;LINK[{13]=5;LINK[14]=-1;:LINK|[{15]=1;LINK[17]=19:LINK{18]=7;
LINK[19]=4;

TOP=-1;
AVAIL=15;
printf(*Postfix Expression: %s",P);

strcat(P,™)");
1=0;
while(P[1]!=")"}
{
if(isdigit(P[i]))
{
num=P[1}-'0";
PUSH (num) ;
}
1f(P[1l)== '+’ II Pli]== ‘=’ II Pli)== ‘%! || Pli]== '/ || Pli]l==

'ﬁ-ﬁl}

{
A=POP () ;
B=POP () ;

if(Pli)l== ‘+*)
RESULT=B+A;

1f(P[1])== ‘-"*)
RESULT=B-A;

1f(P[1])== **")
RESULT=B*A;

1E£(P[1]l== ‘'/"*)
RESULT=B/A;

1f(Pl1]== *"’)
RESULT=pow (B, A) ;

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

9.44 Data Struclures with C

The following program demonstrates implementation of Hash function in C using subtraction
method as the basis:

Ly

¥#inciude <stdio.h>
#include <conio.h>

void main{()

{
int HASH{int);
int 1;
clrscer();

printf(“"Press any key to generate the Hash Table for Employee
Code (keys) 2000-2020 *);
getch() ;
printf{“\n\n*****HASH TABLE*****\n”*);
printf ("\nKey\tAddress");
for(i1=2000;1<=2020;1i++)
printf(*\n%d\t %d4*,i,HASH(i));

getch():
J

int HASH({int k)

{

return(k-2000) ;
}
Output:

Press any key toe generate the Hash Table for Employee Code (keys)
2000-2020 |

i*‘l’**HASH TABLE*****

Ky Address
2000 0
2001 1
2002 2
2003 3
2004 4
2005 5
2006 &
2007 7
2008 8

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

90.50 Dala Structures with C

key k. The efficiency depends mainly on the load factor A. Specifically, we are interested in the
following two quantities:

S(A) = average number of probes for a successful search
U(A) = average number of probes for an unsuccessful search
These quantities will be discussed for our collision procedures.

Collision Resolution Techniques

There are two broad ways of collision resolution:
(i) Open Addressing, where an array-based implemented.

(ii) Separate Chaining, where an array of linked list implemented.
Open Addressing includes:
¢ Linear probing (linear search)

¢ (Quadratic probing (nonlinear search), and
¢ Double hashing (uses two hash functions).

(i) Open Addressing: Linear Probing and Modifications

Suppose that a new record R with key k is to be added to the memory table 7, but that the
memory location with hash address H(k) = h is already filled. One natural way to resolve the
collision is to assign R to the first available location following 7 [h]. (We assume that the table T
with m locations is circular, so that T[1] comes after T[m].) Accordingly, with such a collision
procedure, we will search for the record R in the table T by linearly searching the locations T [A],
Tlh+ 1], T|h+2],...untl finding R or meeting an empty location, which indicates an unsuccessful
search.

The above collision resolution is called linear probing. The average numbers of probes for a
successful search and for an unsuccessful search are known to be the following respective
quantities:

i . =1 1
S(A) = 2[1+1_;{] and U(A) 2[1+(l—ﬂ.)2]

(Here A = n/m is the load factor.)
The table below summarizes the characteristics of the various open addressing probing
sequences.

Table 9.3 Characteristics of the open addressing probing sequences

probing sequence . primary clustering capacity limit size restriction
linear probing yes none none
quadratic probing no A< % M must be prime
double hashing no none M must be prime

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,

A

arecord 1.2
a subscript or 4.2
Absolute Value 2.3
Abstract Data Types
(ADT) 1.10
Ackermann Function 6.39
Addition of Polynomials 4.37
ADJ] 8.17
Adjacency list 8.17
Adjacency Matrix 8.5, 8.6
sequential representation
of 8.5
Adjacency matrix 8.6
Adjacency structure 8.17
Linked Representation
of 8.17
Adjacent nodes 8.1
ADT Implementation of
Stacks 6.12
Pop Stack 6.14
Push Stack 6.13
ADT model 1.11
Algebra of Matrices 4.55
Algebraic expression 1.7, 7.2
Algorithm 1.12
Algorithmic Notations 2.6

Assignment Statement 2.9
Comments 2.9
Control 2.8
Exit 2.8
Identifying Number 2.8
Input 2.9
Output 2.9
Procedures 2.9
Steps 2.8
Variable Names 2.9
Algorithms 2.1
Ancestor 7.3
Applications of Queues 6.92
Categorizing Data 6.92
Categorizing Data
Design 6.97
Simulation of Queues 6.98
Arguments 2.20
Arithmetic expression 6.15
Arithmetic modulo M 2.3
Array indexes 4.4]
Arrays 1.4
linear array 1.4
matrices 1.4
subscript 1.4
subscripted variable 1.4
tables 1.4
two-dimensional array 1.4

R A S, g -

_ Index

Arrays are regular 4.28
Assignment statements 2.9
Atoms 4.49
Attribute 1.1, 4.49
Avail 5.17
Avail list 5.17
Average Case 2.16, 2.17
AVL Search Trees 7.50
left skewed 7.51
right skewed 7.50

B+ -Trees 7.73
Deletion 7.76
Insertion 7.74
Searching 7.74

B-Trees 7.66
Deletion 7.69
Insertion 7.67
Searching 7.67

Back 5.53

Balanced Binary Trees 7.49
Height-balance 7.50
Weight-balance 7.50

Balanced Merge Sort 9.23

Base address 4.6

Base criteria 6.33

LR e B R] E e BTNk BN R e = T

1.2 ingdex

Base values 0,33
Bi-connected Graphs 8.5
Big O Notation 2.18
Binary logarithms 2.6
Binary search
Binary search tree 9.29, 7.38
Deleting In 7.38
[nserting In 7.20
searching 7.29
Binary Search Trees 7.28
Linked hlist 7.28
Sorted linear array 7.28
Binary tree 7.1, 7.2
ancestor 7.3
child 7.3
copies 7.2
depth 7.3
descendant 7.3
edge 7.3
generation 7.3
height 7.3
leaf 7.3
left 7.3
level number 7.3
parent 7.3
path 7.3
predecessor 7.3
rght child 7.3
right descendant 7.3
sibhings 7.3
similar 7.2
Bit matnx X.6
Boolean matrix 8.6

paths 8.7
Boundary values 6.26
Branch 7.3
Breadth-first search 8.3
graph 8.31

Brothers 7.3

Bubble Sort 4.15. 4.17
Complexity of 4.18

Buddy Systems 3.65

Byte-addressable machine 3.2

C
Catloc() 4.47

1.12. 4.19, 9.18

Ceiling 2.2
Chatning 9.52
Character data 3.1
Character set 3.1
Child 7.3. 7.110
Circular header list 5.38
Circular list 541
Circular Quenes 6.67
Circularly Linked Lists 5.47
Closed 8.2
Collision Resolution 9.49
Chaining 9.52
Double hashing 9.51
Open Addressing 9.50
Quadratic probing 9.51
Column 1.5, 4.30, 4,32
Column-majororder 4.30, 4,32
Common logarithms 2.6
Complete Binary Trees 7.3
Complete graph 8.2
labeled if 8.2
weighted 8.2
Complexity 2.15
Complexity of 3.28, 4.22
Complexity of Heapsort 7.102
Complexity of Insertion
Sort 9.9
Complexity of Radix Sort 9.37
Complexity of Shell Sort
Algorithm 9.33
Complexity of Sorting
Algorithms 9.2
Complexity of the Merge-Sort
Algorithm 9.23
Complexity of the Merging
Algorithm 9.18
Complexity of the Quicksort
Algorithm 6.31]
Complexity of the Selection Sort
Algorithm 9.13
Concatenation 3.2, 3.12
Conditional Flow 2.10
Double Alternative 2.11
Multiple Alternatives 2,11
Single Aiternative 2.10
Constants 3.7
Control 2.9

Copying 5.32
Cycle 8.2

D

Data 1.1

Data base management 1.3

Data item 1.1

Data modification 9.38
Pointers 9.38
Searching 9.38, 9.39

Data structure 1.3
linear 1.3
non-linear 1.3

Data Types 2.22
Character 2.22
effect 2.24
fixed point 2.22
floating point 2.22
Global Vanables 2.23
Integer 2.22
local variables 2.23

Logical 2.22
nonlocal variables 2.24

Real 2.22
side 2.24
Decimal to Binary
Conversion 6.31
Decision tree 9.3
decision 9.3
for sorting 9.3
Degree 8.1
Degree of a node B8.]
Delete 3.14, 6.53
Deleted from 5.32
Deleting 1.9
Deleting the Node Following a
Given Node §.35
Deleting the Node with a Given

[tem of Information 5.36
Deletion 3.14, 4.1

Deletion Algorithms 5.34

Dense lists 5.2

Depth 6.37, 7.4

Depth-First Search 8.36

Deque 6.78
input-restricted 6.78

output-restricted 6,78
Descendant 7.3
Dest 8.18
Deleting from 8.23
Graph 8.20
[nserting in 8.21
Searching in 8.21
Diagonal 4.35
Digraph 8.3
Directed Acyclic Graphs 8.4
Directed graph 8.3, 8.4
connected 8.4
strongly connected 8.4
unilaterally connected 5.4
Directed Graphs 8.3
Divide-and-conquer
algorithm 6.39
Divide-and-Conquer
Algorithms 6.39
Division method 9.42
Double hashing 9.51
Double rotation 7.54
Doubly Linked Lists 5.52
Dummy index 2.4
Dummy variable 2.4

E

Edge 7.3, 8.1
Edge list 8.18
Elementary 1.|
Elementary items 1.1, 449
Empty list 5.2
Empty string 3.2
Empty tree 7.1
Endpoints 8.1
Entity 1.1
Entity set .|
Exit 2.0
Exponents 2.5
Expression Trees 7.112
Extended binary
ree 7.4, 7.103
Extended Binary Trees 7.4
extended 7.4
External nodes 7.4, 7.103
External path 7.103
External path length 7.103

&

Factorial Function 2.4, 6.33

Father 7.3

Fibonacci Sequence 6.37

Field 1.1, 1.2, 4.49

FIFO 1.8, 6.1, 6.50

File 1.1, 1.2, 449

File management 1.3

First 5.53

First Pattern Matching
Algorithm 3.20

Fixed-length records 1.2

Fixed-Length Storage 3.2

Floor 2.2

Flow of 2.9

Folding method 9.42

FORW 5.53

Free pool 5.17

Free(y 4.47

Free- 5.17

Free-storage list 5.17

Freeing Space 4.49

Front 1.8, 6.50, 6.51]

Function subalgorithms 2.20

G

Game Trees 7.113
Garbage Collection 5.21
Garbage Compaction 5.22
General Multidimensional
Arrays 4.32
General Trees 7.109
children of 7.109
forest 7.110
general 7.109
nodes 7.100
ordered 7.109
parent 7.109
root 7.109
siblings 7.109
subtrees 7.109
successors 7,109
Generation 7.3
depth 7.3
height) of a tree 7.3
Global varnables 2.24

index

Graph 1.8, 8.1, 8.2

complete 8.2
connected 8.2
finite 8.2
free tree 8.2
labeled 8.2
length 8.2
loop 8.2
Loops 8.2
multigraph 8.2
Multiple edges 8.2
tree graph 8.2
weight K.2
weighted 8.2

Greedy algorithm 8,52
Grounded header list 1s
Group tem 1.1

Group items 1.1
Growth 2108

H

Hanor 0.40

Hash addressing 9.41
Hash function 941
Hash Functions 9.42
Hash Table 946
Hashing 9.41
Hashing 9.41
Hashing function 9.41

Digit extraction
method 9.45

I.3

5.38

Division method 9.42
Folding method 9.42
Midsquare method 9.42

Subtraction method

Header 7.23

Header linked hist 3,38
Header Linked Lists
Header list 3.54
Header node 3.38

header 5.38

Header Nodes 7.23
Heap 7.90, 7.91

9,43

538

Deleting the Root of a 7.94

Inserting into 7.91

Heapsort 7.90

Deleting the Root of a 7.102

1.4 Index

Homogencous 4.2
Huffman's
Algorithm 7.103, 7.105

Identifiers 4.49
Identifying Number 2.8
~ Incidence matrix 8.68
Indegree 8.3
Index 4.2, 4.28
Index set 4.2, 4.28
Indexing 3.10, 4.51
Infix notation 6.15
Info 5.4, 75
Initial
point 8.3
substring 3.2
Inorder
successor 7.27
Threading 7.24
Traversal 7.14
Inserting 1.9
Inserting after a Given
Node 5.27
Inserting into a Sorted Linked
List 5.27
Insertion 3.14, 4.1
Insertion Algorithms
Insertion Sort 9.6
Complexity of 9.9
insertion 9.6
Integer value 2.3
Internal nodes 7.4, 7.103
Internal path length 7.103
Isolated node 8.1
Item 1.1
Iteration Logic 2,13

J

5.24, 9.18

Jagged 4.40
Josephus Problem 5.63

K

K-way Merge Sort 9.23
Key 1.2

Key values 1.2, 9.1
Keys 1.2, 9.1

Kruskal's Algorithm 8.52

L

Largest 7.3
Last 3.54
Left 7.3, 7.5
Lett subtree 7.1
Left successor 7.1
Length 3.2, 7.103, 8.2
Level 7.3
Level number 6.37
LIFO 1.7, 6.1
Linear array 1.4, 4.2
Linear probing 9.50
Linear Search 1.12, 4.19
hinear 1.12
Lincar search
Linear 4.19
linear 2.16
sequential search 4.19
Link 5.4
linked list 5.8
Searching 5.12
Link field 5.2
Linked Lists 1.5, 1.6, 5.2,
5.12, 9.38
Linked representation 7.5
Linked Storage 3.6
List 1.5, 5.1
List of available space 35.17
List pointer variable 5.2
Little OH Notation 2.20
LLL. Rotaion 7.52
Load factor 9.49
Logarithms 2.5, 2.6
Loop 8.2
Lower 4.60
Lower bound 4.2, 428, 6.3
LR and RL Rotations 7.54

2.16, 4.19

M
m-way Search Trees 7.61
Deletion 7.64

Insertion 7.63

Searching 7.63
Malloc() 4.47

Matrices 1.4, 4.27, 4,54
Matrix 8.6

Adjacency 8.6
Matnix 4.27

Matrix arrays 4.27
Matrix Multiplication 4.56
complexity of 4.59

Maxheap 7.90
Memory 1.2
Memory Allocation 5.17
Memory Allocation for a
pointer 4.48
Merge-sort 9.19
Complexity of 9.23
Merging 1.9, 4.1, 9.14
Merging 9.14
Algorithm 94 9.15
Complexity of 9.18
Merging Ordered and Unordered
Files 9.26
Merging ordered files 9.26
Merging Unordered
Files 9.30
Midsquare method 9.42
Minheap 7.90
Minimizing Overflow 6.7
Minimum Spanning Trees 8.48
Modular Arithmetic 2.2
Modulus 2.3
Multidimensional 4.27
Multidimensional 4.32
multidimensional 4.27
Multidimensional 4.32
Multigraph 8.2
Muluple edges 8.2

Natural 2.6

Neighbors 8.17

Next RK.17

Nextpointer field 5.2

Node 7.2, 8.17

Nude list 8.17

Nodes 3.6, 5.2, 7.1, 7.109, 8.1
Nonhomogeneous data 4.49

Nonlocal vanables 2.24
Nonregular Matrices 9.18
Notation 6.16

Null 5.2, 7.57.5

Null list 5.2

Null pointer 5.2

Null string 3.2

Null tree 7.1

o

O notation 2.1%
Omega Notation 2.19
One-dimensional
arravs 1.4, 4.27
One-way list 5.2
Operations On Graphs 8.20
Deleting 8.23
Inserting .21
Searching 8.21
Operations on Two-Way
Lists 5.55
Deleting 5.56
Inserting 5.56
Searching 5.56
Traversing 3.56
Ordered rooted tree 8.4
QOutdegree 8.3
Output-restricted deque 6.78
Overflow 35.21

P

Pages 4.32
Parallel 4.52
Parallel Arrays 4.52, 4.53
Parent 7.3
Partial ordening 8.40
Path 8.2, 8.8

closed 8.2

simple 8.2
Path Lengths 7.103
Path Matrix 8.8, 8.9
Pattern

matching 3.10, 3.20, 3.23
Permutation 2.4
Pointer 1.5, 4.40
Pointer array 4.40

Pointer Array
Representauon 4,46
Pointer Arrays 4.41, 442

Pointers 4.40
Points 8.1
Polish Notation 6.15
infix notation 6.15
Jan Lukasiewicz 6.15
notation 6.16
postfix (or suffix) 6.16
prefix notation 6.16
Reverse Polish
notation 6.16
Polish notation 6.15
Polynomials 545
Polvphase Merge Sort 9.23
Pop 06.2. 64
Stack 6.5
Posets 8.40
Posets; Topological Sorting
partial ordering 8.40
partially ordered set 8.40
poset 8.40
Topological Sorting 8.41
Postfix 6.16
Postorder 7.9
Postorder traversal 7.16
Postponed Decisions 6.3
Prefix notation 6.16
Preorder 7.9
Precorder traversal 7.12
Primary key 1.2, 9.1, 94
Prime number 2.31
Prim’s Algorithm 8.55
Priority numbers 6.79
Priority gqueue 6.79
Array Representation 6.87
One-Way Last
Representation 6.79
Priority Queues 6.79
priority 6.7Y
Probes 9.49
Probing 9.50
Procedure 2.9, 2.20
Procedure subalgorithms 2.20
Push 6.4
Stack 6.5

Index 1.5

Push 0.2
Push-down lists 6.1

Q

Quadratic probing 9.51
Qualhification 4.5]
Queve 1.8, 6.1, 6.50
Queue as ADT 6.64
Create Queue 6.65
Deletion 6.66
Insertion 6.65
Queues 6.50
front 6.50
Implementation 6.54
rear 6.50
Representation 6.51
Quicksort 6.25, 6.28
Complexity of 6,31
Quicksort 6.25

R-1 Rotation 7.58
RO Rotation 7.57
R1 Rotwation 7.58
Radix Sort 9.34
Complexity of 9.37
Radix sort 9.34
Range 1.1
Rate of 2.18
Rate of Growth; Big O
Notation 2.18
Reachability matrix 8.8
Reachable 8.3
Real 2.22
global 2.23
local 2.23
Realloct) 4.47
Rear 1.8, 0.51
circular array 6.52
inserts 6.53
Record 1.1, 1.2, 449
Record Structure 1.6
Recursion 6.33
base criteria 6.33
base values 6.33
recursive procedure 6.33

1.6 Index

recursively defined 6.33
well-defined 6.33
Recursive procedure 6.44
Recursively defined 6.33
Red-black Trees 7.78
Black-Height 7.78
Deletion 7.83
Inserting 7.79
Re-coloring 7.79
Right rotate with
recoloring 7.8
Rotation 7.79
Searching 7.79
Reheap 7.94
Remainder Function 2.2
Repeat-for loop 2.13
Repeat-while loop 2.14
Repetitive Flow 2,13
end value 2.13
increment 2,13
initial value 2.13
repeat-for loop 2.13
test value 2.13
Replacement 3.14, 3.16
Right 7.5
Right child (or son} 7.3
Right subtrees 7.1
Right successor 7.1
binary 7.1
Root 7.1, 7.5, 8.4
Rooted tree 8.4
Rooted tree graph 1.6
Row 1.5, 4.27, 4.32
Row-major order 4.30, 4.32
RR Rotation 7.52

S

Sy 9.50

Scalar product 4.55

Scalars 4.49

Search 4.1, 4.22

Searching 1.9, 9.1, 9.38

Searching Algorithms 1.12
Binary Search 1.12
Linear Search 1.12

Searching Ordered Table 9.39
Binary Search 9.39

indexed Search 9.40
Jump Search 9.40
Sequential Search 9.40
Second Pattern Matching
Algorithm 3.23
Selection Logic 2.10
Selecuon Sort 9.10
Complexity of 9,13
selecion 9.10
Senmustatic character
vanable 3.7
Sequence Logic 2.10
Sequential Flow 2.10
Sequential representation 7.8
Sequential search 4.19
Shell Sort 9.31
Shortest-Path Algorithm 8.14
Shortest-Path Algorithm
(Dnjsktra’s Algorithm) 8.13
SIBLIK] 7.110
Siblings 7.3

Simple
graph 8.4
path 8.2
Single rotation 7.54
Son 7.3
Sort
key 9.4
order 9.6

stability 9.6

Sorted array 9.38

Sorting 1.9, 4.1, 4.15, 9.1
bubble sort 4.15

Sorting Files 9.4

Sorting Pointers 9.4

Source 8.3

Space-Time Tradeoffs .18

Sparse Matrices 4.60

Square matrix 4.55

Stack 1.7, 6.1

Stack as ADT 6.11

Stacks 6.2, 6.3, 6.4

Start 5.3

Status 8.31

Status of N 8.31

Storage list 5.17

Storage representations 4.28
Column-major 4.29

Row-major 4.28
String 3.2
Strongly 8.9
Strongly connected 8.4
Subalgorithm 2.20
Subscript 1.4, 4.2

subscripted 1.4
Subscripted variable 4.2
Substring 3.2, 3.8, 3.9
Substring of 3.2
Subtrees 7.1
Successors 7.1, 8.17
Summation Symbol 2.3
Switch 2.21
Symmetric matrix 8.6

T

Tabbing 9.19
Tables 1.4, 4.27
Terminal
nodes 7.2
pomnt 8.3
substring 3.2
Text 3.14
Theta Notation 2.19
Threaded Binary Trees 7.27
Threaded trees 7.24
Threads 7.24
Time-Space Tradeoff 1.13
Top 1.7, 64
Top of the stack 1.7, 6,2
Topological Sorting 8.40
Towers of 6.42
Towers of Hanoi 6.39, 6.46
Transitive closure 8.9
Traversal 4.1
Traversal Algorithms Using
Stacks 7.12
Inorder Traversal 7.14
Postorder Traversal 7.16
Preorder Traversal 7.12
Traverse 7.9
binary tree 7.9
traversing 7.9
Traversing 1.9
Traversing a Graph 8.31
Breadth-First Search 8.31

Depth-First Search 8.36
status 8.31

Traversing Binary Trees 7.9
Inorder 7.9
Postorder 7.9

Preorder 7.9
Tree 7.1

null 7.1
Trees 1.6, 74

external nodes 7.4
internal nodes 7.4
Triangular matrix 4.60
Trndiagonal matrix 4.60

Two-Dimensional Arrays 1.4,

4.27

Two-way 5.54

Two-Way Header Lists 5.54
deleted from 5.56
header 35.54

inserted into 557

two-way list 5.55
Two-way Lists 5.52, 5.72

two-way 5.52
Two-Way Merge Sort 9.24

U

Uiy 9.50

Underflow 5.21
inserted into 5,22

Underflow 5.21

Upper bound 4.2, 4.28

V

Variable lengths 1.2
variable-length 1.2
Variable-length records 1.2

Index 1.7

Vanable-Length Storage 3.4
Variables 2.22, 3.7
type 2.22
Vertices 8.1
Visiting 4.8
deleting 4.10
Inserting 4.10
linear array 4.8
traversing 4.8

W

Warshall's Algorithm 8.9
Weight 8.2, 8.13

Weight matrix 8.13
Weighted path length 7.104
Word Processing 3.13
Worst Case 2.16, 2.17

SCHAUM'S

ouT/ine

Schaum'’s helps you

A Hone problem-

solving skills

A Find answers fast

A Cut study time

A Brush up before

tests

A Achieve high
performance

ﬁz Bl o™ enmaad TN i
miﬂ' 3

yragw' ' 'r L s
i P N TEEE, DR ST

s

Higher Education

Computing

Study Guide

Related titles in
Schaum's Outlines

Data Structures
Programming with C, 3e
Programming with C++, 2e
Data Structures with Java, 2e

Computer Architecture and
Organization, 2e

Computer Graphics, 2e
Operating Systems
Computer Networking
Discrete Mathematics, 3e

Database Management Systems

www.tatamcgrawhill.com

ISBN 13:978=0-07-070198-4
ISBN 10:0-D7-070198-%
I

JIE

7800701701984/

9

The High Performance

